Home
Class 12
MATHS
If f(x)=|(cos(x+alpha),cos(x+beta),cos(x...

If `f(x)=|(cos(x+alpha),cos(x+beta),cos(x+gamma)),(sin(x+alpha),sin(x+beta),sin(x+gamma)),(sin(beta+gamma),sin(gamma-alpha),sin(alpha-beta))|,` then (Given `alpha != beta != gamma)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = |(cos(x + alpha), cos(x+beta), cos(x + gamma)),(sin(x + alpha), sin(x+beta), sin(x + gamma)), (sin(beta - gamma), sin(gamma - alpha), sin(alpha - beta))| and f(2) = -2, then |sum_(r=1)^20 f(r)| equals

If f(x) = |{:(cos (x+alpha),cos(x+beta),cos(x+gamma)),(sin (x+alpha),sin(x+beta),sin(x+gamma)),(sin(beta+gamma),sin(gamma+alpha),sin(alpha+beta)):}| then f(theta)-2f(phi)+f(psi) is equal to

If f(x) = |{:(cos (x+alpha),cos(x+beta),cos(x+gamma)),(sin (x+alpha),sin(x+beta),sin(x+gamma)),(sin(beta+gamma),sin(gamma+alpha),sin(alpha+beta)):}| then f(theta)-2f(phi)+f(psi) is equal to

If f(x) = |{:(cos (x+alpha),cos(x+beta),cos(x+gamma)),(sin (x+alpha),sin(x+beta),sin(x+gamma)),(sin(beta+gamma),sin(gamma+alpha),sin(alpha+beta)):}| then f(theta)-2f(phi)+f(psi) is equal to

If f(x) = |{:(cos (x+alpha),cos(x+beta),cos(x+gamma)),(sin (x+alpha),sin(x+beta),sin(x+gamma)),(sin(beta+gamma),sin(gamma+alpha),sin(alpha+beta)):}| then f(theta)-2f(phi)+f(psi) is equal to

If f(x)=|{:(cos(x+alpha),cos(x+beta),cos(x+gamma)),(sin(x+alpha),sin(x+beta),sin(x+gamma)),(sin(beta-gamma),sin(gamma-alpha),sin(alpha-beta)):}| and f(2) =5 "the" overset(20)underset(r=1)sumf(r) is equal to

If ,cos(x+alpha)cos(x+beta),cos(x+gamma)sin(x+alpha),sin(x+beta),sin(x+gamma)sin(beta-gamma),sin(gamma-alpha),sin(alpha-beta) and f(0)=-2, then ,sum_(r=1)^(30)|f(r)| equals

If ,cos(x+alpha)cos(x+beta),cos(x+gamma)sin(x+alpha),sin(x+beta),sin(x+gamma)sin(beta-gamma),sin(gamma-alpha),sin(alpha-beta) and f(2),=6, then find (1)/(5)sum_(r=1)^(25)f(r)

prove that | (sin alpha, sin beta, sin gamma), (cos alpha, cos beta, cos gamma), (sin 2alpha, sin 2beta, sin 2gamma) | = 4sin (1/2) (beta-gamma) * sin (1/2) (gamma-alpha) * sin (1/2) (alpha-beta) xx {sin (beta + gamma) + sin (gamma + alpha) + sin (alpha + beta)}.

If cos alpha+cos beta+cos gamma=0=sin alpha+sin beta+sin gamma then x^(sin(2 alpha-beta-gamma)*x^(sin(2 beta-gamma-alpha)))*x ^(sin(2 gamma-alpha-beta)) is