Home
Class 12
MATHS
Without expanding, show that the value o...

Without expanding, show that the value of the determinant is zero:
`|[(2^x+2^(-x))^2, (2^x-2^(-x))^2, 1] , [(3^x+3^(-x))^2, (3^x-3^(-x))^2, 1] , [(4^x+4^(-x))^2, (4^x-4^(-x))^2, 1]|`

Text Solution

Verified by Experts

$$\left|\begin{array}{lll}\left(2^{x}+2^{-x}\right)^{2} & \left(2^{x}-2^{-x}\right)^{2} & 1 \\ \left(3^{x}+3^{-x}\right)^{2} & \left(3^{x}-3^{-x}\right)^{2} & 1 \\ \left(4^{x}+4^{-x}\right)^{2} & \left(4^{x}-4^{-x}\right)^{2} & 1\end{array}\right|$$ $$=\left|\begin{array}{lll}\left(2^{2 x}+2^{-2 x}+2\right) & \left(2^{2 x}+2^{-2 x}-2\right) & 1 \\ \left(3^{2 x}+3^{-2 x}+2\right) & \left(3^{2 x}+3^{-2 x}-2\right) & 1 \\ \left(4^{2 x}+4^{-2 x}+2\right) & \left(4^{2 x}+4^{-2 x}-2\right) & 1 \\ 4 & \left(2^{2 x}+2^{-2 x}-2\right) & 1\end{array}\right|$$ $$=\left|\begin{array}{lll}4 & \left(2^{2 x}+2^{-2 x}-2\right) & 1 \\ 4 & \left(3^{2 x}+3^{-2 x}-2\right) & 1 \\ 4 & \left(4^{2 x}+4^{-2 x}-2\right) & 1\end{array}\right|\left[\right.$$ Applying $$\left.C_{1} \rightarrow C_{1}-C_{2}\right]$$ $$=4\left|\begin{array}{lll}1 & \left(2^{2 x}+2^{-2 x}-2\right) & 1 \\ 1 & \left(3^{2 x}+3^{-2 x}-2\right) & 1 \\ 1 & \left(4^{2 x}+4^{-2 x}-2\right) & 1\end{array}\right|$$ $$=0$$
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos
  • DIFFERENTIABILITY

    RD SHARMA|Exercise Solved Examples And Exercises|136 Videos

Similar Questions

Explore conceptually related problems

If x,y,zepsilonR then the value of |((2x^(x)+2^(-x))^(2),(2^(x)-2^(-x))^(2),1),((3x^(x)+3^(-x))^(2),(3^(x)-3^(-x))^(2),1),((4^(x)+4^(-x))^(2),(4^(x)-4^(-x))^(2),1)| is

The value of the determinant |{:(1+x,2,3,4),(1,2+x,3,4),(1,2,3+x,4),(1,2,3,4+x):}| is

Find the value of x for which f(x)=((x-2)^(2)(1-x)(x-3)^(3)(x-4)^(2))/((x+1))<=

Find the sum to n terms of the following series: (x+(1)/(x))^(2)+(x^(2)+(1)/(x^(2)))^(2)+(x^(3)+(1)/(x^(3)))^(2)+(x^(4)+(1)/(x^(4)))^(2)+

What is the coefficient of x^(4) in the expansion of (1+2x+3x^(2)+4x^(3)+….)^(1//2) ?

If x in R - {0} then minimum possible value of the expression (1)/(7)[(3x^(2)+(4)/(3x^(2))+1)^(2)-2(3x^(2)+(4)/(3x^(2)))+4]

Determine the value of a for which the polynomial 2x^(4)-ax^(3)+4x^(2)+2x+1 is divisible by 1-2x

((x-1)/(x-2))-((x-2)/(x-3))=((x-3)/(x-4))-((x-4)/(x-5))

If |[1,x,x^2] , [x,x^2,1] , [x^2,1,x]|=3 then find the value of |[x^3-1, 0, x-x^4] , [0,x-x^4, x^3-1] , [x-x^4, x^3-1, 0]|

Simplify: (x^(3)-2x^(2)+3x-4)(x-1)-(2x-3)(x^(2)-x+1)

RD SHARMA-DETERMINANTS-Solved Examples And Exercises
  1. Prove the identities: |[z, x, y],[ z^2,x^2,y^2],[z^4,x^4,y^4]|=|[x,...

    Text Solution

    |

  2. Without expanding, show that the value of each of the determinants is ...

    Text Solution

    |

  3. Without expanding, show that the value of the determinant is zero: ...

    Text Solution

    |

  4. Without expanding, show that the value of each of the determinants is ...

    Text Solution

    |

  5. Without expanding, show that the value of each of the determinants is ...

    Text Solution

    |

  6. Using the properties of determinants, prove that following |(a-b,-c^2,...

    Text Solution

    |

  7. Prove the identities: |[a, b, c],[ a-b,b-c,c-a],[ b+c,c+a, a+b]|=a^3+...

    Text Solution

    |

  8. For any triangleABC, the value of determinant |[sin^2A,cotA,1],[sin^2B...

    Text Solution

    |

  9. Without expanding, show that the value of each of the determinants is ...

    Text Solution

    |

  10. If x , y in R , then the determinant =|(cosx,-sinx,1),(sinx,cosx,1),(...

    Text Solution

    |

  11. The maximum value of Delta=|(1,1,1),(1,1+sintheta,1),(1+costheta,1,1)...

    Text Solution

    |

  12. Prove that: |[-2a, a+b,a+c],[ b+a,-2b,b+c],[c+a, c+b,-2c]|=4(a+b)(b+c...

    Text Solution

    |

  13. Without expanding, show that the value of each of the determinants is ...

    Text Solution

    |

  14. If m is a positive integer and Dr=|2r-1\ ^m Cr1m^2-1 2^m m+1s in^2(...

    Text Solution

    |

  15. Without expanding, show that "Delta"=|(a-x)^2(a-y)^2(a-z)^2(b-x)^2(b-y...

    Text Solution

    |

  16. Let Deltar=|[r , x , (n(n+1))/2] , [2r-1 , y , n^2] , [3r-2 , z , (n(3...

    Text Solution

    |

  17. If Deltar=|[2^(r-1)2 , 3^(r-1) , 4. 5^(r-1)] , [x , y , z] , [2^n-1 , ...

    Text Solution

    |

  18. Find a quadratic polynomial phi(x) whose zeros are the maximum and mi...

    Text Solution

    |

  19. Let f(x)=|secxcosxsec^2x+cotxcos e cxcos^2xcos^2x cos e c^2x1cos^2xcos...

    Text Solution

    |

  20. Show that: |(a, b-c,c+b), (a+c, b, c-a), (a-b,b+a, c)|=(a+b+c)(a^2+b^2...

    Text Solution

    |