Home
Class 12
MATHS
tan^(-1)a+cot^(-1)(a+1)=tan^(-1)(a^2+a+1...

`tan^(-1)a+cot^(-1)(a+1)=tan^(-1)(a^2+a+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

cot(tan^(-1)a+cot^(-1)a)

tan^(-1)n+cot^(-1)(n+1)=tan^(-1)(n^(2)+n+1)

Prove that i) tan^(-1)(1+x)/(1-x)=pi/4 + tan^(-1)x,x lt 1 ii) tan^(-1)x+cot^(-1)(x+1)=tan^(-1)(x^(2)+x+1)

Prove statement "tan"^(-1) x +"cot"^(-1)(x+1)="tan"^(-1)(x^2+x+1)

Show that tan ^(-1) n+cot ^(-1)(n+1)=tan ^(-1)(n^2+n+1)

Prove that : (i) tan^(-1) x + cot^(-1)( x+1) = tan^(-1) (x^(2)+x+1) (ii) cot^(-1) 3 + "cosec"^(-1) sqrt(5) = pi/4

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

Prove that : tan^-1 x + cot^-1(x+1) = tan^-1(x^2 + x +1)

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x