Home
Class 12
MATHS
Let f(x)=|secxcosxsec^2x+cotxcos e cxcos...

Let `f(x)=|secxcosxsec^2x+cotxcos e cxcos^2xcos^2x cos e c^2x1cos^2xcos^2x|` Prove that `int_0^(pi/2)f(x)dx=-pi/4-8/(15)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=|(secx,cos x,sec^2x + cot x cosecx),(cos^2x,cos^2x,cosec^2 x),(1,cos^2x,cos^2x)| then int_0^(pi/2) f(x) dx=.....

int_0^(pi//2) x^2 cos 2x dx

int_(0)^(pi//2) e^(x) cos x" " dx=

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

int_(0)^(pi//2)sin^(4)xcos^(5)x dx=

int(cos2x)/(sin^(2)xcos^(2)x)dx=

inte^xcos(e^x+2)dx

If f(x)=cosxcos2xcos4xcos8xcos16x," then "f'((pi)/(4)) is

int(sin2xcos2x)/(sin^(4)2x+cos^(4)2x)dx=

int(cos2x)/(sin^(2)x.cos^(2)x)dx=