Home
Class 12
MATHS
INDEFINITE INTEGRALS | SOME IMPORTANT IN...

INDEFINITE INTEGRALS | SOME IMPORTANT INTEGRALS | ` int sqrt(a^2 - x^2) dx = 1/2 x sqrt (a^2 - x^2 ) + 1/2 a^2 sin^-1 (x/a) + c`, `int sqrt(a^2 + x^2) = 1/2 x sqrt (a^2 + x^2) + 1/2 a^2 log ( x + sqrt( a^2 + x^2)) + c`, `int sqrt(x^2 - a^2) = 1/2 x sqrt (x^2 - a^2) - 1/2 a^2 log ( x + sqrt( x^2 - a^2)) + c`, Integral of the form `sqrt (ax^2 + bx + c) dx`, Examples: `int sqrt(x^2 + 2x + 5) dx`, Integral of the form `int(px+q) sqrt(ax^2 + bx + c) dx`, Examples: `int(3x -2) sqrt( x^2 +x+1) dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int 1/ sqrt (a^2 + x^2) dx = log ( x + sqrt(x^2 + a^2)) + c

int sqrt(x^(2)-a^(2))=(1)/(2)x sqrt(x^(2)-a^(2))-(1)/(2)a^(2)log(x+sqrt(x^(2)-a^(2))+c

int sqrt(a^(2)-x^(2))dx=(1)/(2)x sqrt(a^(2)-x^(2))+(1)/(2)a^(2)sin^(-1)((x)/(a))+c

int sqrt(a^(2)+x^(2))=(1)/(2)x sqrt(a^(2)+x^(2))+(1)/(2)a^(2)log(x+sqrt(a^(2)+x^(2))+c

Prove that int frac{1}{sqrt (x^2 - a^2)} dx = log (x+ sqrt (x^2 -a^2)) + c

int(1)/(sqrt(a^2+x^2))dx=log|x+sqrt(a^2+x^2)|+c

int(1)/(sqrt(x^(2)-a^(2)))=log(x+sqrt(x^(2)-a^(2))+c

int x(ln(x+sqrt(1+x^2))/sqrt(1+x^2)dx

int (sqrt(1 -x^(2)) sin^(-1) x + x)/(sqrt(1 - x^(2))) dx =