Home
Class 12
MATHS
If m in N and mgeq2, prove that: |1 1 1...

If `m in N` and `mgeq2,` prove that: `|1 1 1m_(C_1)m+1_(C_1)m+2_(C_1)m_(C_2)m+1_(C_2)m+2_(C_2)|=1`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

|{:(1,1,1),(m_(C1),m+1_(C1),m+2_(C1)),(m_(C2),m+1_(C2),m+2_(C2)):}|=

If m in N and m>=2 prove that: |111^(m)C_(1)^(m+1)C_(1)^(m+2)C_(1)^(m)C_(2)^(m+1)C_(2)^(m+2)C_(2)|=1

If minR and mgt=2 then prove that |[1,1,1] , [C(m,1), C(m+1,1), c(m+2,1)] , [C(m,2), C(m+1,2), C(m+2,2)]|=1

The value of the determinant |(1,1,1),(.^(m)C_(1),.^(m +1)C_(1),.^(m+2)C_(1)),(.^(m)C_(2),.^(m +1)C_(2),.^(m+2)C_(2))| is equal to

Prove that mC_(1)^(n)C_(m)-^(m)C_(2)^(2n)C_(m)+^(m)C_(3)^(3n)C_(m)-...=(-1)^(m-1)n^(m)

Prove that sum_(r=1)^(m-1)(2r^(2)-r(m-2)+1)/((m-r)^(m)C_(r))=-(1)/(m)

If the lines whose equations are y=m_1 x+ c_1 , y = m_2 x + c_2 and y=m_3 x + c_3 meet in a point, then prove that : m_1 (c_2 - c_3) + m_2 (c_3 - c_1) + m_3 (c_1 - c_2) =0

(i) Find the value of 'a' if the lines 3x-2y+8=0 , 2x+y+3=0 and ax+3y+11=0 are concurrent. (ii) If the lines y=m_(1)x+c_(1) , y=m_(2)x+c_(2) and y=m_(3)x+c_(3) meet at point then shown that : c_(1)(m_(2)-m_(3))+c_(2)(m_(3)-m_(1))+c_(3)(m_(1)-m_(2))=0

The value of determinant |1 1 1^m C_1^(m+1)C_1^(m+2)C_1^m C_2^(m+1)C_2^(m+2)C_2| is equal to 1 b. -1 c. 0 d. none of these