Home
Class 12
MATHS
(2,-2)(d)-2, 1-(log3)^(prime)(log2 2) Th...

`(2,-2)(d)-2, 1-(log3)^(prime)(log_2 2)` The roots ofthe equation, 2x+2.3°x/(x-リ= 9 are given by (a) (c) 2,-2 12. 1-1082 3,2 (b) 1082 (2/3),I (d) 2,1-(log3)/ (log2)

Promotional Banner

Similar Questions

Explore conceptually related problems

For a >0,!=1, the roots of the equation (log)_(a x)a+(log)_x a^2+(log)_(a^2a)a^3=0 are given a^(-4/3) (b) a^(-3/4) (c) a (d) a^(-1/2)

For a >0,!=1, the roots of the equation (log)_(a x)a+(log)_x a^2+(log)_(a^2a)a^3=0 are given a^(-4/3) (b) a^(-3/4) (c) a (d) a^(-1/2)

If the root of the equation log_(2)(x)-log_(2)(sqrt(x)-1)=2 is alpha, then the value of alpha^(log_(4)3) is (a) 1 (b) 2 (c) 3 (d) 4

For a >0,!=1, the roots of the equation (log)_(a x)a+(log)_x a^2+(log)_(a^2x)a^3=0 are given

Number of value(s) of x satisfying the equation log_2 (log_3 (x^2)) =1 is/are (A) 0 (B) 1 (c) 2 (D) 3

the equation of log_(2)(3-x)+log_(2)(1-x)=3

Solution(s) of the equation. 3x^2-2x^3 = log_2 (x^2 + 1) - log_2 x is/are

Solution(s) of the equation. 3x^2-2x^3 = log_2 (x^2 + 1) - log_2 x is/are

The sum of all the roots of the equation log_(2)(x-1)+log_(2)(x+2)-log_(2)(3x-1)=log_(2)4

The sum of all the roots of the equation log_(2)(x-1)+log_(2)(x+2)-log_(2)(3x-1)=log_(2)4