Home
Class 12
MATHS
Without expanding evaluate the determina...

Without expanding evaluate the determinant `|[sinalpha,cosalpha,sin(alpha+delta)],[sinbeta,cosbeta,sin(beta+delta)],[singamma,cosgamma,sin(gamma+delta)]|`

Text Solution

AI Generated Solution

To evaluate the determinant \[ D = \begin{vmatrix} \sin \alpha & \cos \alpha & \sin(\alpha + \delta) \\ \sin \beta & \cos \beta & \sin(\beta + \delta) \\ \sin \gamma & \cos \gamma & \sin(\gamma + \delta) \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos
  • DIFFERENTIABILITY

    RD SHARMA|Exercise Solved Examples And Exercises|136 Videos

Similar Questions

Explore conceptually related problems

Without expanding evaluate the determinant |sin alpha cos alpha sin(alpha+delta)sin beta cos beta sin(beta+delta)sin gamma cos gamma sin(gamma+delta)|

|(sin alpha, cosalpha,sin(alpha+delta)),(sinbeta, cos beta,sin(beta+delta)),(singamma,cosgamma,sin(gamma+delta))|=

Show that |[sinalpha, cosalpha, cos(alpha+delta)],[sinbeta, cosbeta, cos(beta+delta)],[singamma, cosgamma, cos(gamma+delta)]|=0

Prove that det [[sin alpha, cos alpha, sin (alpha + delta) sin beta, cos beta, sin (beta + delta) sin gamma, cos gamma, sin (gamma + delta)]] = 0

sin alpha, cos alpha, cos (alpha + delta) sin beta, cos beta, cos (beta + delta) sin gamma, cos gamma, cos (gamma + delta)] | = 0

Without expanding,show that the value of each of the determinants is zero: det[[sin alpha,cos alpha,cos(alpha+delta)sin beta,cos beta,cos(beta+delta)sin gamma,cos gamma,cos(gamma+delta)]]

If /_\ = |[sinalpha, cosalpha, sin(alpha+delta)],[sinbeta, cosbeta, sin(beta+delta)],[singamma, cosgamma, sin(gamma+delta)]| then prove that /_\ is independent of alpha, beta, gamma and delta.

Show without expanding at any stage that: | (1,cosalpha-sinalpha, cosalpha+sinalpha),(1,cosbeta-sinbeta,cosbeta+sinbeta),(1, cosgamma-singamma,cosgamma+singamma)| =2 |(1,cosalpha, sinalpha),(1,cosbeta, sinbeta),(1,cosgamma,singamma)|

Evaluate : Delta=|{:(0,sinalpha,-cosalpha),(-sinalpha,0,sinbeta),(cosalpha,-sinbeta,0):}| .

Show without expanding at any stage that: [0,sinalpha-cosalpha],[-sinalpha,0,sinbeta],[cosalphas-sinbeta,0]|=0

RD SHARMA-DETERMINANTS-Solved Examples And Exercises
  1. If 1=|(1, 1, 1),(x^2,y^2,z^2),(x, y ,z)|a n d2=|(1 ,1, 1),(y z, z x,x ...

    Text Solution

    |

  2. Without expanding show that |[b^2c^2,b c, b+c],[c^2a^2,c a ,c+a ],[a^2...

    Text Solution

    |

  3. Without expanding evaluate the determinant |[sinalpha,cosalpha,sin(alp...

    Text Solution

    |

  4. If A+B+C=pi, then the value of |[sin(A+B+C),sin(A+C),cosC],[-sinB,0...

    Text Solution

    |

  5. If Ar=|[1,r,2^r],[2,n,n^2],[n,(n(n+1))/2, 2^(n+1)]|, the value of sum(...

    Text Solution

    |

  6. If the determinant |[a,b,2aalpha+3b],[b,c,2balpha+3c],[2aalpha+3b,2bal...

    Text Solution

    |

  7. If a , b , c are distinct, then the value of x satisfying |(0,x^2-a, x...

    Text Solution

    |

  8. Using the factor theorem it is found that a+b , b+c and c+a are thr...

    Text Solution

    |

  9. Let |(x^2+3x,x-1,x+3),(x+1,-2x x-4),(x-3,x+4 ,3x)|=a x^4+b x^3+c x^2+e...

    Text Solution

    |

  10. If Dk=|[1,n,n],[2k,n^2+n+2,n^2+n],[2k-1,n^2,n^2+n+2]| and sum(k=1)^...

    Text Solution

    |

  11. If Delta1=|(1, 1, 1),(a, b, c),( a^2,b^2,c^2)|,Delta2=|(1,bc, a),(1,ca...

    Text Solution

    |

  12. The value of the determinant |(a^2,a,1),(cosn x,cos(n+1)x,cos(n+2)x),(...

    Text Solution

    |

  13. Evaluate: (i) |(5 ,4),(-2, 3)| (ii) |(sintheta,costheta),(-costheta,s...

    Text Solution

    |

  14. Evaluate: (i) |(x^2+x y+y^2,x+y ),(x^2-x y+y^2,x-y)| (ii) |(1,(log)b ...

    Text Solution

    |

  15. Evaluate D =|[2, 3,-2],[ 1, 2, 3],[-2, 1,-3]| by expanding it along th...

    Text Solution

    |

  16. Evaluate the determinant D=|2 3-2 1 2 3-2 1-3| by expanding it alon...

    Text Solution

    |

  17. Evaluate D =|[2, 3,-2],[ 1, 2, 3],[-2, 1,-3]| by using Sarrus diagram.

    Text Solution

    |

  18. Evaluate =|-1 6-2 2 1 1 4 1-3| by two methods.

    Text Solution

    |

  19. For what value of x the matrix A=[[1,-2,3],[1,2,1],[x,2,-3]] is singul...

    Text Solution

    |

  20. Determine the values of x for which the matrix A=[x+1-3 4-5x+2 2 4 ...

    Text Solution

    |