Home
Class 12
MATHS
Let f(x) = |sinx| + |cosx|, g(x) = cos(...

Let `f(x) = |sinx| + |cosx|, g(x) = cos(cosx) + cos(sinx) ,h(x)={-x/2}+sinpix` , where { } representsfractional function, then the period of

Promotional Banner

Similar Questions

Explore conceptually related problems

sinx + cosx = sqrt(2) cos2x

((sinx - x cosx)/(x sinx + cos x ))

Let f(x) = sinx + cosx, g(x) =x^(2)-1 . Then g(f(x)) is invertible for x in

f(x)=sin^2x+cos^4x+2 and g(x)=cos(cosx)+cos(sinx) Also let period f(x) and g(x) be T_1 and T_2 respectively then

f(x)=sin^2x+cos^4x+2 and g(x)=cos(cosx)+cos(sinx) Also let period f(x) and g(x) be T_1 and T_2 respectively then

f(x)=sin^2x+cos^4x+2 and g(x)=cos(cosx)+cos(sinx) Also let period f(x) and g(x) be T_1 and T_2 respectively then

f(x)=sin^2x+cos^4x+2 and g(x)=cos(cosx)+cos(sinx) Also let period f(x) and g(x) be T_1 and T_2 respectively then

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)