Home
Class 11
CHEMISTRY
For the reaction , FeCO(3)(s)rarrFeO(s)+...

For the reaction , `FeCO_(3)(s)rarrFeO(s)+CO_(2)(g),DeltaH=82.8kJ` at `25^(@)C`, what is `(DeltaE " or "DeltaU)` at `25^(@)C`?

A

82.8 kJ

B

80.32 kJ

C

`-2394.77 kJ`

D

`-3274.75 kJ`

Text Solution

AI Generated Solution

The correct Answer is:
To find the change in internal energy (ΔE or ΔU) for the reaction: \[ \text{FeCO}_3(s) \rightarrow \text{FeO}(s) + \text{CO}_2(g) \] with a given enthalpy change (ΔH) of 82.8 kJ at 25°C, we can use the relationship between enthalpy change and internal energy change: \[ \Delta H = \Delta U + \Delta N \cdot R \cdot T \] Where: - ΔH = change in enthalpy - ΔU = change in internal energy - ΔN = change in the number of moles of gas - R = universal gas constant (8.314 J/mol·K or 0.008314 kJ/mol·K) - T = temperature in Kelvin ### Step 1: Identify ΔN In the given reaction, we start with 1 mole of solid (FeCO3) and produce 1 mole of solid (FeO) and 1 mole of gas (CO2). The change in the number of moles of gas (ΔN) is: \[ \Delta N = \text{moles of products} - \text{moles of reactants} \] \[ \Delta N = 1 - 0 = 1 \] ### Step 2: Convert Temperature to Kelvin The temperature given is 25°C. To convert this to Kelvin: \[ T = 25 + 273 = 298 \, \text{K} \] ### Step 3: Use the Gas Constant We will use the gas constant R in kJ: \[ R = 0.008314 \, \text{kJ/mol·K} \] ### Step 4: Substitute Values into the Equation Now, we can substitute the known values into the equation: \[ \Delta H = \Delta U + \Delta N \cdot R \cdot T \] \[ 82.8 \, \text{kJ} = \Delta U + (1) \cdot (0.008314 \, \text{kJ/mol·K}) \cdot (298 \, \text{K}) \] ### Step 5: Calculate ΔN · R · T Calculating ΔN · R · T: \[ \Delta N \cdot R \cdot T = 1 \cdot 0.008314 \cdot 298 \] \[ = 2.478 \, \text{kJ} \] ### Step 6: Solve for ΔU Now, substitute this value back into the equation: \[ 82.8 = \Delta U + 2.478 \] \[ \Delta U = 82.8 - 2.478 \] \[ \Delta U = 80.322 \, \text{kJ} \] ### Final Answer Thus, the change in internal energy (ΔU) at 25°C is approximately: \[ \Delta U \approx 80.32 \, \text{kJ} \] ---

To find the change in internal energy (ΔE or ΔU) for the reaction: \[ \text{FeCO}_3(s) \rightarrow \text{FeO}(s) + \text{CO}_2(g) \] with a given enthalpy change (ΔH) of 82.8 kJ at 25°C, we can use the relationship between enthalpy change and internal energy change: \[ \Delta H = \Delta U + \Delta N \cdot R \cdot T \] ...
Promotional Banner

Topper's Solved these Questions

  • THERMODYNAMICS

    NARENDRA AWASTHI|Exercise Level 1 (Q.1 To Q.30)|6 Videos
  • THERMODYNAMICS

    NARENDRA AWASTHI|Exercise Level 1 (Q.31 To Q.60)|2 Videos
  • STOICHIOMETRY

    NARENDRA AWASTHI|Exercise Level 3 - Subjective Problems|20 Videos

Similar Questions

Explore conceptually related problems

In the reaction , CO_(2)(g)+H_(2)(g)rarrCO(g)+H_(2)O(g), " "DeltaH= 2.8kJ, DeltaH represents

In the reaction CO_(2)(g)+H_(2)(g)rarrCO(g)+H_(2)O(g), DeltaH=2.8 kJ DeltaH represents

In the reaction, CO_(2)(g)=H_(2)(g)toCO(g)=H_(2)O(g)," "DeltaH=2.8 kJ DeltaH represents :

Given the reaction at 975^(@)C and 1 atm. CaCO_(3)(s)toCaO(s)+CO_(2)(g),DeltaH=176kJ Then DeltaE is equal to

Given the reaction at 967^(@)C and 1 atm . CaCO_(3)(s)hArrCaO(s)+CO_(2)(g) DeltaH=176 kJ mol^(-1) , then DeltaE equals

For CaCO_(3)(s)rarr CaO(s)+CO_(2)(g) at 977^(@)C, Delta H = 174 KJ/mol , then Delta E is :-

For the raction B_(2)H_(6)(g)+3O_(2)(g)rarrB_(2)O_(2)(s)+3H_(2)O(l) DeltaE=-2143.2KJ Calculate DeltaH for the reaction at 25^(@)C

Given that 3C(s)+2Fe_(2)O_(3)(s)rarr4Fe(s)+3CO_(2)(g), DeltaH^(@)=-93657 kcal at 25^(@)C 3C(s)+3O_(2)(g)rarr3CO_(2)(g), DeltaH^(@)=-94050 kcal at 25^(@)C The value of DeltaH^(@)_(f)(Fe_(2)O_(3)) is