For the reaction , `FeCO_(3)(s)rarrFeO(s)+CO_(2)(g),DeltaH=82.8kJ` at `25^(@)C`, what is `(DeltaE " or "DeltaU)` at `25^(@)C`?
A
82.8 kJ
B
80.32 kJ
C
`-2394.77 kJ`
D
`-3274.75 kJ`
Text Solution
AI Generated Solution
The correct Answer is:
To find the change in internal energy (ΔE or ΔU) for the reaction:
\[ \text{FeCO}_3(s) \rightarrow \text{FeO}(s) + \text{CO}_2(g) \]
with a given enthalpy change (ΔH) of 82.8 kJ at 25°C, we can use the relationship between enthalpy change and internal energy change:
\[ \Delta H = \Delta U + \Delta N \cdot R \cdot T \]
Where:
- ΔH = change in enthalpy
- ΔU = change in internal energy
- ΔN = change in the number of moles of gas
- R = universal gas constant (8.314 J/mol·K or 0.008314 kJ/mol·K)
- T = temperature in Kelvin
### Step 1: Identify ΔN
In the given reaction, we start with 1 mole of solid (FeCO3) and produce 1 mole of solid (FeO) and 1 mole of gas (CO2).
The change in the number of moles of gas (ΔN) is:
\[ \Delta N = \text{moles of products} - \text{moles of reactants} \]
\[ \Delta N = 1 - 0 = 1 \]
### Step 2: Convert Temperature to Kelvin
The temperature given is 25°C. To convert this to Kelvin:
\[ T = 25 + 273 = 298 \, \text{K} \]
### Step 3: Use the Gas Constant
We will use the gas constant R in kJ:
\[ R = 0.008314 \, \text{kJ/mol·K} \]
### Step 4: Substitute Values into the Equation
Now, we can substitute the known values into the equation:
\[ \Delta H = \Delta U + \Delta N \cdot R \cdot T \]
\[ 82.8 \, \text{kJ} = \Delta U + (1) \cdot (0.008314 \, \text{kJ/mol·K}) \cdot (298 \, \text{K}) \]
### Step 5: Calculate ΔN · R · T
Calculating ΔN · R · T:
\[ \Delta N \cdot R \cdot T = 1 \cdot 0.008314 \cdot 298 \]
\[ = 2.478 \, \text{kJ} \]
### Step 6: Solve for ΔU
Now, substitute this value back into the equation:
\[ 82.8 = \Delta U + 2.478 \]
\[ \Delta U = 82.8 - 2.478 \]
\[ \Delta U = 80.322 \, \text{kJ} \]
### Final Answer
Thus, the change in internal energy (ΔU) at 25°C is approximately:
\[ \Delta U \approx 80.32 \, \text{kJ} \]
---
To find the change in internal energy (ΔE or ΔU) for the reaction:
\[ \text{FeCO}_3(s) \rightarrow \text{FeO}(s) + \text{CO}_2(g) \]
with a given enthalpy change (ΔH) of 82.8 kJ at 25°C, we can use the relationship between enthalpy change and internal energy change:
\[ \Delta H = \Delta U + \Delta N \cdot R \cdot T \]
...
Topper's Solved these Questions
THERMODYNAMICS
NARENDRA AWASTHI|Exercise Level 1 (Q.1 To Q.30)|6 Videos
THERMODYNAMICS
NARENDRA AWASTHI|Exercise Level 1 (Q.31 To Q.60)|2 Videos
In the reaction , CO_(2)(g)+H_(2)(g)rarrCO(g)+H_(2)O(g), " "DeltaH= 2.8kJ, DeltaH represents
In the reaction CO_(2)(g)+H_(2)(g)rarrCO(g)+H_(2)O(g), DeltaH=2.8 kJ DeltaH represents
In the reaction, CO_(2)(g)=H_(2)(g)toCO(g)=H_(2)O(g)," "DeltaH=2.8 kJ DeltaH represents :
Given the reaction at 975^(@)C and 1 atm. CaCO_(3)(s)toCaO(s)+CO_(2)(g),DeltaH=176kJ Then DeltaE is equal to
Given the reaction at 967^(@)C and 1 atm . CaCO_(3)(s)hArrCaO(s)+CO_(2)(g) DeltaH=176 kJ mol^(-1) , then DeltaE equals
For CaCO_(3)(s)rarr CaO(s)+CO_(2)(g) at 977^(@)C, Delta H = 174 KJ/mol , then Delta E is :-
For the raction B_(2)H_(6)(g)+3O_(2)(g)rarrB_(2)O_(2)(s)+3H_(2)O(l) DeltaE=-2143.2KJ Calculate DeltaH for the reaction at 25^(@)C
Given that 3C(s)+2Fe_(2)O_(3)(s)rarr4Fe(s)+3CO_(2)(g), DeltaH^(@)=-93657 kcal at 25^(@)C 3C(s)+3O_(2)(g)rarr3CO_(2)(g), DeltaH^(@)=-94050 kcal at 25^(@)C The value of DeltaH^(@)_(f)(Fe_(2)O_(3)) is
NARENDRA AWASTHI-THERMODYNAMICS-Level 3 - Match The Column