Home
Class 11
CHEMISTRY
For a process to be spontaneous, DeltaG ...

For a process to be spontaneous, `DeltaG` must be………… .

A

`(DeltaG)_("system")` must be negative

B

`(DeltaG)_("system")` must be positive

C

`(DeltaS)_("system")` must be positive

D

`(DeltaS)_("system")` must be negative

Text Solution

Verified by Experts

The correct Answer is:
A

For spontaneous reaction
`(DeltaG_("system"))_(T,P)=-ve`
Promotional Banner

Topper's Solved these Questions

  • THERMODYNAMICS

    NARENDRA AWASTHI|Exercise Level 1 (Q.1 To Q.30)|6 Videos
  • THERMODYNAMICS

    NARENDRA AWASTHI|Exercise Level 1 (Q.31 To Q.60)|2 Videos
  • STOICHIOMETRY

    NARENDRA AWASTHI|Exercise Level 3 - Subjective Problems|20 Videos

Similar Questions

Explore conceptually related problems

For a process to occurs spontaneously

Assertion (A): The thermodynamic factor which determines the spontaneity of a process is the free energy. For a process to be spontaneous the free energy must be-ve. Reason (R ) : The change in free energy is related to the change in a process must always be positive if its is spontaneous.

Statement: The thermodynamics functions which determines the spontaneity of a process is the free energy. For a process to be spontaneous, the change in free energy must be negative. Explanation:The change in free energy is related to the change in enthalpy and change in entropy. the change in entropy for a process must be always positive if it is spontaneous.

Dependence of Spontaneity on Temperature: For a process to be spontaneous , at constant temperature and pressure , there must be decrease in free energy of the system in the direction of the process , i.e. DeltaG_(P.T) lt 0. DeltaG_(P.T) =0 implies the equilibrium condition and DeltaG_(P.T) gt 0 corresponds to non- spontaneity. Gibbs- Helmholtz equation relates the free energy change to the enthalpy and entropy changes of the process as : " "DeltaG_(P.T) = DeltaH-TDeltaS" ""..."(1) The magnitude of DeltaH does not change much with the change in temperature but the entropy factor TDeltaS change appreciably . Thus, spontaneity of a process depends very much on temperature. For endothermic process, both DeltaH and DeltaS are positive . The energy factor, the first factor of equation, opposes the spontaneity whereas entorpy factor favours it. At low temperature the favourable factor TDeltaS will be small and may be less than DeltaH, DeltaG will have positive value indicated the nonspontaneity of the process. On raising temperature , the factor TDeltaS Increases appreciably and when it exceeds DeltaH, DeltaG would become negative and the process would be spontaneous . For an expthermic process, both DeltaH and DeltaS would be negative . In this case the first factor of eq.1 favours the spontaneity whereas the second factor opposes it. At high temperature , when T DeltaS gt DeltaH, DeltaG will have positive value, showing thereby the non-spontaneity fo the process . However , on decreasing temperature , the factor , TDeltaS decreases rapidly and when TDeltaS lt DeltaH, DeltaG becomes negative and the process occurs spontaneously. Thus , an exothermic process may be spontaneous at low temperature and non-spontaneous at high temperature. A reaction has a value of DeltaH =-40 Kcal at 400 k cal mol^(-1) . The reaction is spontaneous, below this temperature , it is not . The values fo DeltaG and DeltaS at 400 k are respectively

Dependence of Spontaneity on Temperature: For a process to be spontaneous , at constant temperature and pressure , there must be decrease in free energy of the system in the direction of the process , i.e. DeltaG_(P.T) lt 0. DeltaG_(P.T) =0 implies the equilibrium condition and DeltaG_(P.T) gt 0 corresponds to non- spontaneity. Gibbs- Helmholtz equation relates the free energy change to the enthalpy and entropy changes of the process as : " "DeltaG_(P.T) = DeltaH-TDeltaS" ""..."(1) The magnitude of DeltaH does not change much with the change in temperature but the entropy factor TDeltaS change appreciably . Thus, spontaneity of a process depends very much on temperature. For endothermic process, both DeltaH and DeltaS are positive . The energy factor, the first factor of equation, opposes the spontaneity whereas entorpy factor favours it. At low temperature the favourable factor TDeltaS will be small and may be less than DeltaH, DeltaG will have positive value indicated the nonspontaneity of the process. On raising temperature , the factor TDeltaS Increases appreciably and when it exceeds DeltaH, DeltaG would become negative and the process would be spontaneous . For an expthermic process, both DeltaH and DeltaS would be negative . In this case the first factor of eq.1 favours the spontaneity whereas the second factor opposes it. At high temperature , when T DeltaS gt DeltaH, DeltaG will have positive value, showing thereby the non-spontaneity fo the process . However , on decreasing temperature , the factor , TDeltaS decreases rapidly and when TDeltaS lt DeltaH, DeltaG becomes negative and the process occurs spontaneously. Thus , an exothermic process may be spontaneous at low temperature and non-spontaneous at high temperature. The enthalpy change for a certain rection at 300 K is -15.0 K cal mol^(-1) . The entropy change under these conditions is -7.2 cal K^(-1)mol^(-1) . The free energy change for the reaction and its spontaneous/ non-spontaneous character will be

Dependence of Spontaneity on Temperature: For a process to be spontaneous , at constant temperature and pressure , there must be decrease in free energy of the system in the direction of the process , i.e. DeltaG_(P.T) lt 0. DeltaG_(P.T) =0 implies the equilibrium condition and DeltaG_(P.T) gt 0 corresponds to non- spontaneity. Gibbs- Helmholtz equation relates the free energy change to the enthalpy and entropy changes of the process as : " "DeltaG_(P.T) = DeltaH-TDeltaS" ""..."(1) The magnitude of DeltaH does not change much with the change in temperature but the entropy factor TDeltaS change appreciably . Thus, spontaneity of a process depends very much on temperature. For endothermic process, both DeltaH and DeltaS are positive . The energy factor, the first factor of equation, opposes the spontaneity whereas entorpy factor favours it. At low temperature the favourable factor TDeltaS will be small and may be less than DeltaH, DeltaG will have positive value indicated the nonspontaneity of the process. On raising temperature , the factor TDeltaS Increases appreciably and when it exceeds DeltaH, DeltaG would become negative and the process would be spontaneous . For an expthermic process, both DeltaH and DeltaS would be negative . In this case the first factor of eq.1 favours the spontaneity whereas the second factor opposes it. At high temperature , when T DeltaS gt DeltaH, DeltaG will have positive value, showing thereby the non-spontaneity fo the process . However , on decreasing temperature , the factor , TDeltaS decreases rapidly and when TDeltaS lt DeltaH, DeltaG becomes negative and the process occurs spontaneously. Thus , an exothermic process may be spontaneous at low temperature and non-spontaneous at high temperature. For the reaction at 298 K ,2A + B rarr C DeltaH =100 kcal and DeltaS=0.050 kcal K^(-1) . If DeltaH and DeltaS are assumed to be constant over the temperature range, above what temperature will the reaction become spontaneous?

For a process top be spontaneous, at constant temperature and pressure, there must be decreases in free energy of the system in the direction of the process, i.e. DeltaG_(P.T.)lt0.Delta_(P.T.)=0 implies the equilibrium condition and DeltaG_(P.T.)gt0 corresponding to non-spontaneity. Gibb's Helmholtz equation relates the free energy change to the enthalpy and entropy change of the process as : DeltaG_(P.T.)=DeltaH-TDeltaS ......(i) The magnitude of Delta H does not change much with the change in temperature but the entropy factor TDeltaS changes appreciably. Thus, spontaneity of a process depends very much on temperature. For edothermic proces, both DeltaH "and " DeltaS are positive. The energy factor,the first factor of equation, opposes the spontaneity whereas entropy factor favours it . At low temperature, the favourable factor TDeltaS will be small and may be less than Delta H, DeltaG will have positive value indicating the non-spontaneity of the process. On raising temperature, the factor TDeltaS increases appreciably and when it exceeds DeltaH,DeltaG would become negative and the process would be spontaneous. For an exothermic process, both DeltaH " and " DeltaS would be negative. In this case, the first factor of equation(i) favours the spontaneity whereas the second factor opposes it. At high temperature, when TDeltaSgt DeltaH, DeltaG will have positive value, showing thereby the non-spontaneity of the process. However, on decreasing temperature, the factore TDeltaSlt DeltaH,DeltaG becomes negative and the process occurs spontaneously. Thus, an exothermic process may be spontaneous at low temperature and non-spontaneous at high temperature. A reaction has a value of DeltaH =-40 kcal at 400K . Above 400K, the reaction is spontaneous, below this temperature, it is not. The value of DeltaG " and "DeltaS at 400K are respectively:

Dependence of Spontaneity on Temperature: For a process to be spontaneous , at constant temperature and pressure , there must be decrease in free energy of the system in the direction of the process , i.e. DeltaG_(P.T) lt 0. DeltaG_(P.T) =0 implies the equilibrium condition and DeltaG_(P.T) gt 0 corresponds to non- spontaneity. Gibbs- Helmholtz equation relates the free energy change to the enthalpy and entropy changes of the process as : " "DeltaG_(P.T) = DeltaH-TDeltaS" ""..."(1) The magnitude of DeltaH does not change much with the change in temperature but the entropy factor TDeltaS change appreciably . Thus, spontaneity of a process depends very much on temperature. For endothermic process, both DeltaH and DeltaS are positive . The energy factor, the first factor of equation, opposes the spontaneity whereas entorpy factor favours it. At low temperature the favourable factor TDeltaS will be small and may be less than DeltaH, DeltaG will have positive value indicated the nonspontaneity of the process. On raising temperature , the factor TDeltaS Increases appreciably and when it exceeds DeltaH, DeltaG would become negative and the process would be spontaneous . For an expthermic process, both DeltaH and DeltaS would be negative . In this case the first factor of eq.1 favours the spontaneity whereas the second factor opposes it. At high temperature , when T DeltaS gt DeltaH, DeltaG will have positive value, showing thereby the non-spontaneity fo the process . However , on decreasing temperature , the factor , TDeltaS decreases rapidly and when TDeltaS lt DeltaH, DeltaG becomes negative and the process occurs spontaneously. Thus , an exothermic process may be spontaneous at low temperature and non-spontaneous at high temperature. When CaCO_(3) is heated to a high temperature , it undergoes decomposition into CaO and CO_(2) whereas it is quite stable at room temperature . The most likely explanation of it, is