Calculate the standard enthalpy of reaction for the following reaction using the listed enthalpies of reaction :
`3Co(s)+2O_(2)(g)rarrCo_(3)O_(4)(s)`
`2 Co(s)+O_(2)(g)rarr2CoO(s)," "DeltaH_(1)^(@)=-475.8 kJ`
`6CoO(s)+O_(2)(g)rarr2Co_(3)O_(4)(s),DeltaH_(2)^(@)=-355.0 kJ`
Calculate the standard enthalpy of reaction for the following reaction using the listed enthalpies of reaction :
`3Co(s)+2O_(2)(g)rarrCo_(3)O_(4)(s)`
`2 Co(s)+O_(2)(g)rarr2CoO(s)," "DeltaH_(1)^(@)=-475.8 kJ`
`6CoO(s)+O_(2)(g)rarr2Co_(3)O_(4)(s),DeltaH_(2)^(@)=-355.0 kJ`
`3Co(s)+2O_(2)(g)rarrCo_(3)O_(4)(s)`
`2 Co(s)+O_(2)(g)rarr2CoO(s)," "DeltaH_(1)^(@)=-475.8 kJ`
`6CoO(s)+O_(2)(g)rarr2Co_(3)O_(4)(s),DeltaH_(2)^(@)=-355.0 kJ`
A
`-891.2 kJ`
B
`-120.8 kJ`
C
`+891.2 kJ`
D
`-830.8 kJ`
Text Solution
AI Generated Solution
The correct Answer is:
To calculate the standard enthalpy of the reaction \(3 \text{Co}(s) + 2 \text{O}_2(g) \rightarrow \text{Co}_3\text{O}_4(s)\), we will use the given enthalpies of the two reactions:
1. \(2 \text{Co}(s) + \text{O}_2(g) \rightarrow 2 \text{CoO}(s), \Delta H_1^\circ = -475.8 \, \text{kJ}\)
2. \(6 \text{CoO}(s) + \text{O}_2(g) \rightarrow 2 \text{Co}_3\text{O}_4(s), \Delta H_2^\circ = -355.0 \, \text{kJ}\)
### Step 1: Adjust the first reaction
We need to manipulate the first reaction to match the number of cobalt atoms in our target reaction. Since our target reaction has 3 moles of Co, we multiply the entire first reaction by 3:
\[
3 \times (2 \text{Co}(s) + \text{O}_2(g) \rightarrow 2 \text{CoO}(s))
\]
This gives:
\[
6 \text{Co}(s) + 3 \text{O}_2(g) \rightarrow 6 \text{CoO}(s)
\]
The enthalpy change for this reaction will be:
\[
\Delta H = 3 \times (-475.8 \, \text{kJ}) = -1427.4 \, \text{kJ}
\]
### Step 2: Use the second reaction
The second reaction is already in a suitable form for our target reaction. We will keep it as is:
\[
6 \text{CoO}(s) + \text{O}_2(g) \rightarrow 2 \text{Co}_3\text{O}_4(s)
\]
The enthalpy change for this reaction is:
\[
\Delta H = -355.0 \, \text{kJ}
\]
### Step 3: Combine the reactions
Now we will add the two reactions together. We need to ensure that the products and reactants cancel appropriately.
From the first reaction, we have:
\[
6 \text{Co}(s) + 3 \text{O}_2(g) \rightarrow 6 \text{CoO}(s)
\]
From the second reaction, we have:
\[
6 \text{CoO}(s) + \text{O}_2(g) \rightarrow 2 \text{Co}_3\text{O}_4(s)
\]
When we add these two reactions, the \(6 \text{CoO}(s)\) cancels out:
\[
6 \text{Co}(s) + 3 \text{O}_2(g) + 6 \text{CoO}(s) + \text{O}_2(g) \rightarrow 2 \text{Co}_3\text{O}_4(s)
\]
This simplifies to:
\[
3 \text{Co}(s) + 2 \text{O}_2(g) \rightarrow \text{Co}_3\text{O}_4(s)
\]
### Step 4: Calculate the total enthalpy change
Now we can calculate the total enthalpy change for the target reaction:
\[
\Delta H = (-1427.4 \, \text{kJ}) + (-355.0 \, \text{kJ}) = -1782.4 \, \text{kJ}
\]
### Final Result
Thus, the standard enthalpy of the reaction \(3 \text{Co}(s) + 2 \text{O}_2(g) \rightarrow \text{Co}_3\text{O}_4(s)\) is:
\[
\Delta H = -1782.4 \, \text{kJ}
\]
To calculate the standard enthalpy of the reaction \(3 \text{Co}(s) + 2 \text{O}_2(g) \rightarrow \text{Co}_3\text{O}_4(s)\), we will use the given enthalpies of the two reactions:
1. \(2 \text{Co}(s) + \text{O}_2(g) \rightarrow 2 \text{CoO}(s), \Delta H_1^\circ = -475.8 \, \text{kJ}\)
2. \(6 \text{CoO}(s) + \text{O}_2(g) \rightarrow 2 \text{Co}_3\text{O}_4(s), \Delta H_2^\circ = -355.0 \, \text{kJ}\)
### Step 1: Adjust the first reaction
We need to manipulate the first reaction to match the number of cobalt atoms in our target reaction. Since our target reaction has 3 moles of Co, we multiply the entire first reaction by 3:
...
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
Determine Delta U^(@) at 300K for the following reaction using the listed enthalpies of reaction : 4CO(g)+8H_(2)(g)to3CH_(4)(g)+CO_(2)(g)+2H_(2)O(l) C("graphite")+(1)/(2)O_(2)(g)to CO(g), DeltaH_(1)^(@)=-110.5KJ CO(g)(1)/(2)O_(2)(g)toCO_(2)(g), DeltaH_(2)^(@)=-282.9KJ H_(2)(g)+(1)/(2)O_(2)(g)to H_(2)O(l), DeltaH_(3)^(@)=-285.8KJ C("graphite")+2H_(2)(g)to CH_(4)(g), DeltaH_(4)^(@)=-74.8KJ
Calculate the standard enthalpy of formation of acetylene from the following data : C_((g))+O_(2(g))rarr CO_(2(g)),DeltaH^(@)=-393kJ mol^(-1) H_(2(g))+(1)/(2)O_(2(g)) rarr H_(2)O_((l)),DeltaH^(@)=-285.8kJ mol^(-1) 2C_(2)H_(2(g))+5O_(2(g))rarr 4CO_(2(g))+2H_(2)O_((l)),DeltaH^(@)=-2598.8kJ mol^(-1) .
Calculate the heat of formation of n butane from the followinf data: a. 2C_(4)H_(10)(g) +13O_(2)(g) rarr 8CO_(2)(g) +10H_(2)O(l), DeltaH = - 5757.2 kJ b. C(s) +O_(2) (g)rarrCO_(2)(g), DeltaH =- 405.4 kJ c. 2H_(2)(g) +O_(2)(g) rarr 2H_(2)O(l), DeltaH =- 572.4 kJ
Calculate the heat of combustion of benzene form the following data: a. 6C(s) +3H_(2)(g) rarr C_(6)H_(6)(l), DeltaH = 49.0 kJ b. H_(2)(g) +1//2O_(2)(g) rarr H_(2)O(l), DeltaH =- 285.8 kJ c. C(s) +O_(2) (g) rarr CO_(2)(g), DeltaH =- 389.3 kJ
Consider the following reactions. DeltaH^(@) values of the reactions hve been given as -x, -y and z kJ. Fe_(3)O_(4)(s) to 3Fe(s) + 2O_(2)(g), DeltaH^(@) = z kJ 2Fe(s) + O_(2)(g) to 2FeO(s), DeltaH^(@) =-x kJ 4Fe(s) + 3O_(2)(g) to 2Fe_(2)O_(3)(s), DeltaH^(@) =-y kJ In the given set of reaction, -x//2 kJ refers to