Given : `C("diamond")+O_(2)rarrCO_(2),DeltaH=-395 kJ` `C("graphite")+O_(2)rarrCO_(2),DeltaH=-393 kJ` The enthalpy of formation of diamond from graphite is
A
`+ 2.0 kJ`
B
`-1.5 kJ`
C
`-788 kJ`
D
788 kJ
Text Solution
AI Generated Solution
The correct Answer is:
To find the enthalpy of formation of diamond from graphite, we can use Hess's law, which states that the total enthalpy change for a reaction is the sum of the enthalpy changes for the individual steps.
### Step-by-Step Solution:
1. **Write the Given Reactions:**
- For diamond:
\[
C(\text{diamond}) + O_2 \rightarrow CO_2, \quad \Delta H = -395 \, \text{kJ}
\]
- For graphite:
\[
C(\text{graphite}) + O_2 \rightarrow CO_2, \quad \Delta H = -393 \, \text{kJ}
\]
2. **Identify the Target Reaction:**
- We want to find the enthalpy change for the reaction:
\[
C(\text{diamond}) \rightarrow C(\text{graphite})
\]
3. **Manipulate the Given Reactions:**
- To find the enthalpy change for the formation of diamond from graphite, we can subtract the enthalpy change of the graphite reaction from that of the diamond reaction:
\[
C(\text{diamond}) + O_2 \rightarrow CO_2 \quad (\Delta H = -395 \, \text{kJ}) \quad \text{(1)}
\]
\[
C(\text{graphite}) + O_2 \rightarrow CO_2 \quad (\Delta H = -393 \, \text{kJ}) \quad \text{(2)}
\]
4. **Subtract the Reactions:**
- We will subtract reaction (2) from reaction (1):
\[
C(\text{diamond}) + O_2 - (C(\text{graphite}) + O_2) \rightarrow CO_2 - CO_2
\]
- This simplifies to:
\[
C(\text{diamond}) - C(\text{graphite}) = \Delta H
\]
5. **Calculate the Enthalpy Change:**
- The enthalpy change can be calculated as:
\[
\Delta H = (-395 \, \text{kJ}) - (-393 \, \text{kJ}) = -395 + 393 = -2 \, \text{kJ}
\]
6. **Final Result:**
- The enthalpy of formation of diamond from graphite is:
\[
\Delta H = -2 \, \text{kJ}
\]
To find the enthalpy of formation of diamond from graphite, we can use Hess's law, which states that the total enthalpy change for a reaction is the sum of the enthalpy changes for the individual steps.
### Step-by-Step Solution:
1. **Write the Given Reactions:**
- For diamond:
\[
C(\text{diamond}) + O_2 \rightarrow CO_2, \quad \Delta H = -395 \, \text{kJ}
...
Topper's Solved these Questions
THERMODYNAMICS
NARENDRA AWASTHI|Exercise Level 1 (Q.1 To Q.30)|6 Videos
THERMODYNAMICS
NARENDRA AWASTHI|Exercise Level 1 (Q.31 To Q.60)|2 Videos
C_("diamond")+O_(2)(g)rarrCO_(2)(g),DeltaH=-395 kJ ...... (i) C_("graphite")+O_(2)(g)rarrCO_(2)(g),DeltaH=-393.5KJ" "…(ii) The DeltaH , when diamond is formed from graphite, is
Given that C+O_(2)rarrCO_(2),DeltaH^(@)=-xKJ and 2CO+O_(2)rarr2CO_(2),DeltaH^(@)=-yKJ The enthalpy of formation of carbon monoxide will be
Given that : 2CO_((g))+O_(2(g))rarr2CO_(2(g)),DeltaH^(@)=-P kJ C_((s))+O_(2(g))rarr CO_(2(g)), DeltaH^(@)=-Q kJ the enthalpy of formation of carbon monoxide is :
The enthalpy change for the following reactions are: C_("diamond")+O_(2(g)) rarr CO_(2(g))" "DeltaH=-395.3 KJ "mol"^(-1) C_("graphite")+O_(2(g)) rarr CO_(2(g)) " "DeltaH=-393.4 KJ "mol"^(-1) The enthalpy change for the transition C_("diamond")rarr C_("graphite") will be :
If C(s)+O_(2)(g)rarrCO_(2)(g),DeltaH=X and CO(g)+1//2O_(2)(g)rarrCO_(2)(g),DeltaH=Y , then the heat of formation of CO is
NARENDRA AWASTHI-THERMODYNAMICS-Level 3 - Match The Column