Determine the enthalpy of formation of `B_(2)H_(6)`(g) in kJ/mol of the following reaction :
`B_(2)H_(6)(g)+3O_(2)(g)rarrB_(2)O_(3)(s)+3H_(2)O(g)`,
Given : `Delta_(r )H^(@)=-1941 " kJ"//"mol", " "DeltaH_(f)^(@)(B_(2)O_(3),s)=-1273" kJ"//"mol,"`
`DeltaH_(f)^(@)(H_(2)O,g)=-241.8 " kJ"//"mol"`
Determine the enthalpy of formation of `B_(2)H_(6)`(g) in kJ/mol of the following reaction :
`B_(2)H_(6)(g)+3O_(2)(g)rarrB_(2)O_(3)(s)+3H_(2)O(g)`,
Given : `Delta_(r )H^(@)=-1941 " kJ"//"mol", " "DeltaH_(f)^(@)(B_(2)O_(3),s)=-1273" kJ"//"mol,"`
`DeltaH_(f)^(@)(H_(2)O,g)=-241.8 " kJ"//"mol"`
`B_(2)H_(6)(g)+3O_(2)(g)rarrB_(2)O_(3)(s)+3H_(2)O(g)`,
Given : `Delta_(r )H^(@)=-1941 " kJ"//"mol", " "DeltaH_(f)^(@)(B_(2)O_(3),s)=-1273" kJ"//"mol,"`
`DeltaH_(f)^(@)(H_(2)O,g)=-241.8 " kJ"//"mol"`
A
`-75.6`
B
`+75.6`
C
`-57.4`
D
`-28.4`
Text Solution
AI Generated Solution
The correct Answer is:
To determine the enthalpy of formation of \( B_2H_6(g) \) from the given reaction and data, we can follow these steps:
### Step 1: Write the reaction and identify the given data
The reaction is:
\[
B_2H_6(g) + 3O_2(g) \rightarrow B_2O_3(s) + 3H_2O(g)
\]
Given data:
- \( \Delta_r H^\circ = -1941 \, \text{kJ/mol} \) (enthalpy change for the reaction)
- \( \Delta H_f^\circ (B_2O_3, s) = -1273 \, \text{kJ/mol} \) (enthalpy of formation of \( B_2O_3 \))
- \( \Delta H_f^\circ (H_2O, g) = -241.8 \, \text{kJ/mol} \) (enthalpy of formation of \( H_2O \))
### Step 2: Write the enthalpy change equation
The enthalpy change for the reaction can be expressed using the enthalpies of formation:
\[
\Delta_r H^\circ = \sum (\Delta H_f^\circ \text{ of products}) - \sum (\Delta H_f^\circ \text{ of reactants})
\]
Substituting the known values:
\[
-1941 \, \text{kJ/mol} = \left( \Delta H_f^\circ (B_2O_3) + 3 \times \Delta H_f^\circ (H_2O) \right) - \Delta H_f^\circ (B_2H_6)
\]
### Step 3: Substitute the values into the equation
Substituting the values of \( \Delta H_f^\circ \):
\[
-1941 = \left( -1273 + 3 \times (-241.8) \right) - \Delta H_f^\circ (B_2H_6)
\]
### Step 4: Calculate the total enthalpy of products
Calculating \( 3 \times (-241.8) \):
\[
3 \times (-241.8) = -725.4
\]
Now substituting this back into the equation:
\[
-1941 = \left( -1273 - 725.4 \right) - \Delta H_f^\circ (B_2H_6)
\]
Calculating the sum:
\[
-1273 - 725.4 = -1998.4
\]
So the equation now looks like:
\[
-1941 = -1998.4 - \Delta H_f^\circ (B_2H_6)
\]
### Step 5: Solve for \( \Delta H_f^\circ (B_2H_6) \)
Rearranging the equation to isolate \( \Delta H_f^\circ (B_2H_6) \):
\[
\Delta H_f^\circ (B_2H_6) = -1998.4 + 1941
\]
Calculating the right side:
\[
\Delta H_f^\circ (B_2H_6) = -57.4 \, \text{kJ/mol}
\]
### Final Answer
The enthalpy of formation of \( B_2H_6(g) \) is:
\[
\Delta H_f^\circ (B_2H_6) = -57.4 \, \text{kJ/mol}
\]
To determine the enthalpy of formation of \( B_2H_6(g) \) from the given reaction and data, we can follow these steps:
### Step 1: Write the reaction and identify the given data
The reaction is:
\[
B_2H_6(g) + 3O_2(g) \rightarrow B_2O_3(s) + 3H_2O(g)
\]
Given data:
...
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
The standard enthalpy of formation of ammonia gas is Given: N_(2)H_(4) (g) + H_(2) (g) rarr 2NH_(3) (g), Delta H_(r)^(@) = - 40 kJ//mol DeltaH_(f)^(@) [N_(2)H_(4) (g)] = - 120 kJ//mol
Calculate the standard Gibbs free energy change from the free energies of formation data for the following reaction: C_(6)H_(6)(l) +(15)/(2)O_(2)(g) rarr 6CO_(2)(g) +3H_(2)O(g) Given that Delta_(f)G^(Theta) =[C_(6)H_(6)(l)] = 172.8 kJ mol^(-1) Delta_(f)G^(Theta)[CO_(2)(g)] =- 394.4 kJ mol^(-1) Delta_(f)G^(Theta) [H_(2)O(g)] =- 228.6 kJ mol^(-1)
For the raction B_(2)H_(6)(g)+3O_(2)(g)rarrB_(2)O_(2)(s)+3H_(2)O(l) DeltaE=-2143.2KJ Calculate DeltaH for the reaction at 25^(@)C
Determine enthalpy of formation for H_(2)O_(2)(l) , using the listed enthalpies of reactions: N_(2)H_(4)(l) + 2H_(2)O_(2)(l) rarr N_(2)(g) + 4H_(2)O(l), Delta_(r)H_(1)^(@) =-818 KJ//"mol" N_(2)H_(4)(l)+O_(2)(g) rarr N_(2)(g) + 2H_(2)O(l), Delta_(r)H_(2)^(@)=-622 KJ//"mol" H_(2)(g)+(1)/(2)O_(2)(g) rarr H_(2)O(l), Delta_(r)H_(3)^(@)=-285 KJ//"mol"
For the reaction 3N_(2)O(g)+2NH_(3)(g)to4N_(2)(g)+3H_(2)O(g),DeltaH^(@)=-879.6kJ If DeltaH_(f)^(@)[NH_(3)(g)]=-45.9kJ" "mol^(-1) , DeltaH_(f)^(@)[H_(2)O(g)]=-241.8kJ" "mol^(-1) Then DeltaH_(f)^(@)[N_(2)O(g)] will be:
Determine enthalpy of formation for H_(2)O_(2)(l) , using the listed enthalpies of reaction : N_(2)H_(4)(l)+2H_(2)O_(2)(l)toN_(2)(g)+4H_(2)O(l) , " "Delta_(r)H_(1)^(@)=-818kJ//mol N_(2)H_(4)(l)+O_(2)(g)toN_(2)(g)+2H_(2)O(l) " "Delta_(r)H_(2)^(@)=-622kJ//mol H_(2)(g)+(1)/(2)O_(2)(g)toH_(2)O(l)" "Delta_(r)H_(3)^(@)=-285kJ//mol
Calculate standard free energy change from the free energy of formation data for the following reaction, C_(6)H_(6)(l)+(15)/(2)O_(2)(s)to 6CO_(2)(g)+3H_(2)O(g) . Delta_(f)G^(theta)[C_(6)H_(6)(l)]=172.8 kJ/mol Delta_(f)G^(theta)[CO_(2)(g)]=-394.4 kJ/mol Given that. Delta_(f)G^(theta)[CO_(2)(g)]=394.4 kJ/mol Delta_(r )G^(theta)[H_(2)O(l)]=-228.6 kJ/mol
Calculate Delta_(r) H^(@) for Fe_(2) O_(3) (s) + 3 CO(g) to 2 Fe (s) + 3 CO_(2) (g) Given : Delta_(f) H^(@) (Fe_(2) O_(3) , s) = -822.2 kJ/mol Delta_(f) H^(@) (CO , g) = -110.5 kJ//mol , Delta_(f) H^(@) (CO_(2) , g) = -393.5 kJ/mol
Nitroglycerine (MW =227.1) denotes according to the following equation : 2C_(3)H_(5)(NO_(3))_(3)I to 3N_(2)(g)+1//2O_(2)(g)+6CO_(2)(g)+5H_(2)O(g) The standard molar enthalpies of formation, DeltaH_(f)^(@) for the compounds are given bellow: DeltaH_(f)^(@)[C_(3)H_(5)(NO_(3))_(3)]= -364 kJ//mol DeltaH_(f)^(@)[CO_(2)(g)]= -395.5 kJ//mol DeltaH_(f)^(@)[H_(2)O(g)]= -241.8 kJ//mol DeltaH_(f)^(@)[N_(2)(g)]= 0 kJ//mol DeltaH_(f)^(@)[O_(2)(g)]= 0 kJ//mol The enthalpy change when 10g of nitroglycerine is detonated is