Calculate `Delta_(f)H^(@)` (in kJ/mol) for `Cr_(2)O_(3)` from the `Delta_(r)G^(@)` and the `S^(@)` values provided at `27^(@)`
`4Cr(s)+3O_(2)(g)rarr2Cr_(2)O_(3)(s)," "Delta_(r)G^(@)=-2093.4kJ//mol`
`S^(@)("J//K mol") : S^(@)(Cr,s)=24," "S^(@)(O_(2),g)=205," "S^(@)(Cr_(2)O_(3),s)=81`
Calculate `Delta_(f)H^(@)` (in kJ/mol) for `Cr_(2)O_(3)` from the `Delta_(r)G^(@)` and the `S^(@)` values provided at `27^(@)`
`4Cr(s)+3O_(2)(g)rarr2Cr_(2)O_(3)(s)," "Delta_(r)G^(@)=-2093.4kJ//mol`
`S^(@)("J//K mol") : S^(@)(Cr,s)=24," "S^(@)(O_(2),g)=205," "S^(@)(Cr_(2)O_(3),s)=81`
`4Cr(s)+3O_(2)(g)rarr2Cr_(2)O_(3)(s)," "Delta_(r)G^(@)=-2093.4kJ//mol`
`S^(@)("J//K mol") : S^(@)(Cr,s)=24," "S^(@)(O_(2),g)=205," "S^(@)(Cr_(2)O_(3),s)=81`
A
`-2258.1kJ//mol`
B
`-1129.05kJ//mol`
C
`-964.35kJ//mol`
D
None of these
Text Solution
AI Generated Solution
The correct Answer is:
To calculate the standard enthalpy of formation \(\Delta_f H^\circ\) for \(Cr_2O_3\), we will use the provided values of \(\Delta_r G^\circ\) and the standard entropy \(S^\circ\) values at \(27^\circ C\) (or \(300 K\)).
### Step 1: Write the Reaction and Given Data
The reaction for the formation of chromium oxide is:
\[
4Cr(s) + 3O_2(g) \rightarrow 2Cr_2O_3(s)
\]
Given:
- \(\Delta_r G^\circ = -2093.4 \, \text{kJ/mol}\)
- \(S^\circ(Cr, s) = 24 \, \text{J/K mol}\)
- \(S^\circ(O_2, g) = 205 \, \text{J/K mol}\)
- \(S^\circ(Cr_2O_3, s) = 81 \, \text{J/K mol}\)
### Step 2: Calculate \(\Delta S^\circ\)
The change in entropy \(\Delta S^\circ\) for the reaction can be calculated using the formula:
\[
\Delta S^\circ = S^\circ_{products} - S^\circ_{reactants}
\]
Substituting the values:
\[
\Delta S^\circ = 2 \times S^\circ(Cr_2O_3) - (4 \times S^\circ(Cr) + 3 \times S^\circ(O_2))
\]
\[
\Delta S^\circ = 2 \times 81 - (4 \times 24 + 3 \times 205)
\]
Calculating each term:
\[
= 162 - (96 + 615)
\]
\[
= 162 - 711 = -549 \, \text{J/K mol}
\]
### Step 3: Convert \(\Delta S^\circ\) to kJ
To convert \(\Delta S^\circ\) from J to kJ:
\[
\Delta S^\circ = -549 \, \text{J/K mol} \times \frac{1 \, \text{kJ}}{1000 \, \text{J}} = -0.549 \, \text{kJ/K mol}
\]
### Step 4: Use the Gibbs Free Energy Equation
We can relate \(\Delta G^\circ\), \(\Delta H^\circ\), and \(\Delta S^\circ\) using the equation:
\[
\Delta G^\circ = \Delta H^\circ - T \Delta S^\circ
\]
Rearranging to find \(\Delta H^\circ\):
\[
\Delta H^\circ = \Delta G^\circ + T \Delta S^\circ
\]
Substituting the values:
\[
\Delta H^\circ = -2093.4 \, \text{kJ/mol} + (300 \, \text{K}) \times (-0.549 \, \text{kJ/K mol})
\]
Calculating the second term:
\[
= -2093.4 \, \text{kJ/mol} - 164.7 \, \text{kJ/mol}
\]
\[
= -2258.1 \, \text{kJ/mol}
\]
### Step 5: Calculate \(\Delta_f H^\circ\) for \(Cr_2O_3\)
Since the reaction produces 2 moles of \(Cr_2O_3\), the enthalpy of formation for 1 mole of \(Cr_2O_3\) is:
\[
\Delta_f H^\circ(Cr_2O_3) = \frac{1}{2} \Delta H^\circ
\]
\[
= \frac{1}{2} \times (-2258.1 \, \text{kJ/mol}) = -1129.05 \, \text{kJ/mol}
\]
### Final Answer
\[
\Delta_f H^\circ(Cr_2O_3) = -1129.05 \, \text{kJ/mol}
\]
To calculate the standard enthalpy of formation \(\Delta_f H^\circ\) for \(Cr_2O_3\), we will use the provided values of \(\Delta_r G^\circ\) and the standard entropy \(S^\circ\) values at \(27^\circ C\) (or \(300 K\)).
### Step 1: Write the Reaction and Given Data
The reaction for the formation of chromium oxide is:
\[
4Cr(s) + 3O_2(g) \rightarrow 2Cr_2O_3(s)
\]
Given:
...
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
Calculate standard molar entropy O_(2)(g) from the following thermodynamics data at 300 K : 4Cr(s)+3O_(2)(g)to2Cr_(2)O_(3)(s),DeltaG^(@)=-2093.4 " kJ"//mol DeltaH_(f)^(@)Cr_(2)O_(3)(s)=-1129.05" kJ"//"mole" S_(m)^(@)Cr(s)=24" J"//K" mole" S_(m)^(@)Cr_(2)O_(3)(s)=81" J"//K" mole"
Calculate standard entropy change in the reaction Fe_(2)O_(3)+3O_(a)(g)to 2Cr_(2)O_(3)(s) DeltaG^(@)=-2093.4 KJmol, DeltaH_(f)^(@)Cr_(2)O_(3)(s)=-1129.05KJ//"mole", S_(m)^(@)Cr(s)=24J//Kmol, S_(m)^(@)Cr_(2)O_(3)(s)=81j//Kmol
Calculate Delta_(r) H^(@) for Fe_(2) O_(3) (s) + 3 CO(g) to 2 Fe (s) + 3 CO_(2) (g) Given : Delta_(f) H^(@) (Fe_(2) O_(3) , s) = -822.2 kJ/mol Delta_(f) H^(@) (CO , g) = -110.5 kJ//mol , Delta_(f) H^(@) (CO_(2) , g) = -393.5 kJ/mol
Given Delta_(r)S^(@)=-266 and the listed [S_(m)^(@)value] Calculate S^(@) "for" Fe_(3)O_(4)(s) 4Fe_(3)O_(4)(s)[...] +O_(2)(g)[205] to6Fe_(2)O_(3)(s)[87]
Calculate the Delta_(r)G^(@) for the reaction: C_(6)H_(12)O_(6)(s) + 6O_(2)(g) to 6CO_(2)(g) + 6H_(2)O(l) Delta_(f)G^(@) values (kJ mol^(-1) ) are : C_(12)H_(12)O_(6)(s) = -910.2, CO_(2)(g) = -394.4, H_(2)O(l) = -237.2
Calculate Delta_(r)H^(@) for the reaction : Given Delta_(f)H^(@) values : 2H_(2)S(g) + 3O_2to 2H_(2)O(l) + 2SO_(2)(g) Given Delta_(f)H^(@) values : H_(2)S(g) = -20.60 , H_(2)O(l) = -285.83, SO_(2)(g) = -296.83 kJ "mol"^(-1)
Calculate Delta_(r)S_(m)^(Theta) for the reaction: 4Fe(s)+3O_(2)(g) rarr 2Fe_(2)O_(3)(s) Given that S_(m)^(Theta)(Fe) = 27.3J K^(-1) mol^(-1) , S_(m)^(Theta)(O_(2)) = 205.0J K^(-1)mol^(-1) and S_(m)^(Theta)(Fe_(2)O_(3)) = 87.4 J K^(-1) mol^(-1) .