Home
Class 11
PHYSICS
y=x^(3)-4x^(2)+5. Find (dy)/(dx) , (d^...

`y=x^(3)-4x^(2)+5`. Find ` (dy)/(dx) , (d^(2) y)/(dx^(2))` and ` (d^(3)y)/(dx^(3))` .

Text Solution

AI Generated Solution

To solve the problem, we need to find the first, second, and third derivatives of the function \( y = x^3 - 4x^2 + 5 \). ### Step 1: Find \( \frac{dy}{dx} \) To find the first derivative \( \frac{dy}{dx} \), we differentiate the function \( y \) with respect to \( x \): \[ y = x^3 - 4x^2 + 5 ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    GRB PUBLICATION|Exercise Problems For Practice|35 Videos
  • FORCE AND NEWTONS LAWS OF MOTION

    GRB PUBLICATION|Exercise Comprehension|12 Videos

Similar Questions

Explore conceptually related problems

If y=x^(4) , find (d^(2)y)/(dx^(2))and(d^(3)y)/(dx^(3)) .

Order and degree of the differential equation ((d^(2)y)/(dx^(2)))^(5)+ (4 ((d^(2)y)/(dx^(2)))^(3))/((d^(3)y)/(dx^(3))) + (d^(3)y)/(dx^(3)) = x^(2) - 1 respectively are

(x^(2)d^(2)y)/(dx^(2))=(x(dy)/(dx)-y)^(3) Find Degree.

If y= 3e^(2x)+ 2e^(3x) ,then (d^(2)y)/(dx^(2))-5(dy)/(dx) =

find order and degree [(d^(3)y)/(dx^(3)) +x]^(5/2) = (d^(2)y)/(dx^(2))

What is the degree of the differential equation ((d^(4)y)/(dx^(4)))^(3/2) -5 "" (d^(3) y)/(dx^(3)) + 6 "" (d^(2) y)/(dx^(2)) -8 "" (dy)/(dx) + 5 = 0 ?

Find order and degree 2x^(2)(d^(2)y)/(dx^(2))-3(dy)/(dx)+y=0

find order and degree ((d^(2)y)/(dx^(2)))+((dy)/(dx))^(3)+y^(4)=0