Home
Class 9
MATHS
" (iii) "(sqrt(10)-sqrt(5))/(sqrt(2))...

" (iii) "(sqrt(10)-sqrt(5))/(sqrt(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value to three places of decimals of each of the following.It is given that sqrt(2)=1.414,sqrt(3)=1.732,quad sqrt(5)=2.236 and sqrt(10)=3.162(sqrt(5)+1)/(sqrt(2)) (ii) (sqrt(10)+sqrt(15))/(sqrt(2))

Find the value to three places of decimals of each of the following. It is given that sqrt(2)=1. 414 ,\ \ sqrt(3)=1. 732\ ,\ \ \ sqrt(5)=2. 236 and sqrt(10)\ =\ \ 3. 162 i) (sqrt(5)+1)/(sqrt(2)) (ii) (sqrt(10)+\ sqrt(15))/(sqrt(2))

Simplify: (i) (3sqrt(2)-2sqrt(2))/(3sqrt(2)+\ 2sqrt(3))+(sqrt(12))/(sqrt(3)-\ sqrt(2)) (ii) (sqrt(5)+\ sqrt(3))/(sqrt(5)-\ sqrt(3))+(sqrt(5)-\ sqrt(3))/(sqrt(5)+\ sqrt(3))

Ratonalise the denominator in each of the following and hence evalute by taking sqrt2=1.414, sqrt3=1.732 and sqrt(5)= 2.236 upto three places of decimal. (i)4/sqrt3 , (ii) 6/sqrt6 , (iii)(sqrt10-sqrt5)/2 (iv)sqrt2/(2+sqrt2) ,(v) 1/(sqrt3+sqrt2)

Ratonalise the denominator in each of the following and hence evalute by taking sqrt2=1.414, sqrt3=1.732 and sqrt(5)= 2.236 upto three places of decimal. (i)4/sqrt3 , (ii) 6/sqrt6 , (iii)(sqrt10-sqrt5)/2 (iv)sqrt2/(2+sqrt2) ,(v) 1/(sqrt3+sqrt2)

A metal cube of edge (3sqrt(2))/(sqrt(5)) m is melted and formed into three smaller cubes. If the edges of the two smaller cubes are (3)/(sqrt(10))m and (sqrt(5))/(sqrt(2))m , find the edge of the third smaller cube.

Simplify: (3sqrt(2)-2sqrt(2))/(3sqrt(2)+2sqrt(3))+(sqrt(12))/(sqrt(3)-sqrt(2)) (ii) (sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))+(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))

(4-sqrt5)/sqrt10

Compare the surds (i) A=sqrt(10)-sqrt(5),B=sqrt(19)-sqrt(14) (ii) P=sqrt(10)+sqrt(5),Q=sqrt(8)+sqrt(7)

The distance of the point (1, 2, 3) from the plane x+y-z=5 measured along the straight line x=y=z is 5sqrt(3) (2) 10sqrt(3) (3) 3sqrt(10) 3sqrt(5) (5) 2sqrt(5)