Home
Class 12
MATHS
f(x)=x(x-5)^(2)quad " in "[0,4]...

f(x)=x(x-5)^(2)quad " in "[0,4]

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=x(x-4)^(2), interval [0,4]

f(x) = (1 + x)^(5//x) , x in 0, f (0) = e^(5) , at x =0 f is

If f(0)=0, f(1)=1, f(2)=2 and f(x)=f(x-2)+f(x-3) " for " x=3, 4, 5, ………….., then f(9)=

If f(x) {:(=-x^(2)", if " x le 0 ), (= 5x - 4 ", if " 0 lt x le 1 ),(= 4x^(2)-3x", if " 1 lt x le 2 ):} then f is

f(x) = (1 - cos (4x))/(x^(2)) , x in 0, f (0) = 8 , at x =0 f is

Statement - 1 : Rolle's Theorem can be applied to the function f(x)=1+(x-2)^(4//5) in the interval [0, 4] and Statement - 2 : f(x) is continuous in [0, 4] and f(0)=f(4) .

If f(x)=(x-4)/(2sqrt(x)) , then f^(prime)(1) is a. 5/4 b. 4/5 c. 1 d. 0

If f(x)=x^(2)," for "xge0 =2x-5," for "x lt0 then range of f(x)=

If g(x) = (x^(2)+2x+3) f(x) and f(0) = 5 and lim_(x rarr 0) (f(x)-5)/(x) = 4, then g'(0) =

If f(x)=int((5x^4+4x^5))/((x^5+x+1)^(2))dx and f(0)=0, then the value of f(1) is :