Home
Class 12
MATHS
f(x)=log(10)(sqrt(x-4)+sqrt(6-x))...

f(x)=log_(10)(sqrt(x-4)+sqrt(6-x))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the range of the following functions (i) f(x) = log_(2)(sqrt(x-4) + sqrt(6-x)), 4 le x le 6 (ii) f(x) = 9^(x) - 3^(x) + 1

Domain of the function f(x) = log(sqrt(x-4)+sqrt(6-x))

Domain of the function f(x)=log(sqrt(x-4)+sqrt(6-x))

The domain of y=log_(10)(sqrt(6-x)+sqrt(x-4)) is :

Number of integers in the range of the function f(x)=log_(sqrt(2))(sqrt(x-4)+sqrt(6-x)) is

If "log"_(6) {"log"_(4)(sqrt(x+4) + sqrt(x))} =0 , then x =

If "log"_(6) {"log"_(4)(sqrt(x+4) + sqrt(x))} =0 , then x =

Solve: log_(3)(sqrt(x)+|sqrt(x)-1|)=log_(9)(4sqrt(x)-3+4|sqrt(x)-1|)