Home
Class 12
MATHS
If y=(cosx)^((cosx)^(((cosx)^((...oo)) p...

If `y=(cosx)^((cosx)^(((cosx)^((...oo))` prove that `(dy)/(dx)=-(y^2tanx)/(1-ylogcosx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(cos x)^((cosx)^((cos x )...oo)) then prove that dy/dx=(y^2 tan x)/(y log (cosx)-1).

If y = (cosx)^((cosx)^((cosx)^("....."oo))) , then show that (dy)/(dx) =(y^(2)tanx)/(ylogcosx-1)

If y = (cos x)^((cosx)^((cos x)...oo)), " then " dy/dx is equal to

int(tanx)/(log(cosx))dx=

"If "y=sqrt(cosx+sqrt(cosx+sqrt(cosx+...oo)))", prove that "(dy)/(dx)=(sinx)/((2y-1)).

"If "y=(sinx)^(cosx)+(cosx)^(sinx)", prove that "(dy)/(dx)=(sinx)^(cosx).[cot x cos x-sin x(log sinx)]+(cosx)^(sinx).[cosx(log cos x)-sinx tanx].

y=(sinx)^(tanx)+(cosx)^(secx)

int(tanx)/(1+cosx)dx=

"If "y=x^(cos)+(cosx)^(x)", prove that "(dy)/(dx)=x^(cosx).{(cosx)/(x)-(sinx)logx}+(cosx)^(x)[(log cos x)-x tan x].

Solve the equation: (dy)/(dx)=(1-cosx)/(1+cosx)