Home
Class 12
MATHS
If y=x^x^x^ddot^((((oo)))), (dy)/(dx)...

If `y=x^x^x^ddot^((((oo)))), (dy)/(dx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x^(x^(x^(2)-oo)), find (dy)/(dx)

If =x^(x)^^x((oo)), find (dy)/(dx)

If y=a^(x^(x^(2)*oo)), prove that (dy)/(dx)=(y^(2)log y)/(x(1-y log x*log y))

Let y = x^(x^(x...oo))," then " (dy)/(dx) is equal to

if y=x^(x) then (dy)/(dx)

"If "y=a^(x^(a^(x...oo)))", prove that "(dy)/(dx)=(y^(2)(logy))/(x[1-y(logx)(logy)]).

If y=e^(x)+e^(x)+e^(((x+rarr oo))), show that (dy)/(dx)=(y)/(1-y)

If y=e^(x+e^(x+e^(x)+cdots*oo)), prove that (dy)/(dx)=(y)/(1-y)

If y=x^(x^(x^(x...^(oo)))) , then x(1-ylogx)(dy)/(dx)

If y=x^(x) then (dy)/(dx)=?