Home
Class 12
MATHS
If f(x)=|x|, prove that lim(x->0) f(x) ...

If `f(x)=|x|`, prove that `lim_(x->0) f(x) = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|x|, prove that lim_(x rarr0)f(x)=0

If f(x)=(1)/(|x|) prove that lim_(x rarr0)f(x) does not

If f is an even function, then prove that lim_(x->0^-) f(x) = lim_(x->0^+) f(x)

If |f(x)|lex^(2), then prove that lim_(xto0) (f(x))/(x)=0.

If |f(x)|lex^(2), then prove that lim_(xto0) (f(x))/(x)=0.

If |f(x)|lex^(2), then prove that lim_(xto0) (f(x))/(x)=0.

If |f(x)|lex^(2), then prove that lim_(xto0) (f(x))/(x)=0.

If f(x)=sgn(x)" and "g(x)=x^(3) ,then prove that lim_(xto0) f(x).g(x) exists though lim_(xto0) f(x) does not exist.

If f(x)=sgn(x)" and "g(x)=x^(3) ,then prove that lim_(xto0) f(x).g(x) exists though lim_(xto0) f(x) does not exist.

If f(x)=sgn(x)" and "g(x)=x^(3) ,then prove that lim_(xto0) f(x).g(x) exists though lim_(xto0) f(x) does not exist.