Home
Class 12
MATHS
(A+B)(A-B)!=A^(2)-B^(2)...

(A+B)(A-B)!=A^(2)-B^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[{:(0,1),(1,1):}] "and" B=[{:(0,-1),(1,0):}] , then show that (A+B)(A-B)neA^(2)-B^(2)

If A=[{:(0,1),(1,1):}] "and" B=[{:(0,-1),(1,0):}] , then show that (A+B)(A-B)neA^(2)-B^(2)

If AB= Aand BA=B, then a.A^(2)B=A^(2) b.B^(2)A=B^(2) c.ABA=A d.BAB=B

If a+b=7,ab=2 find value of (a)a^(2)+b^(2)=(b)a^(2)-b^(2)=

Factorise : (a^(2)-b^(2))(a+b)+(b^(2)-c^(2))(b+c)+(c^(2)-a^(2))(c+a)

If tan theta=(a)/(b), then (a sin theta+b cos theta)/(a sin theta-b cos theta) is equal to (a^(2)+b^(2))/(a^(2)-b^(2))(b)(a^(2)-b^(2))/(a^(2)+b^(2))(c)(a+b)/(a-b)(d)(a-b)/(a+b)

If : cot theta =(a)/(b), "then" : a *cos 2 theta +b * sin 2 theta= A) a^(2) +b^(2) B) a^(2) - b^(2) C)a D)b

If : sin theta = (a^(2)-b^(2))/(a^(2)+b^(2)), "then" : cot theta= A) (4a^(2)b^(2))/(a^(2) -b^(2)) B) (a^(2) + b^(2))/(a^(2) - b^(2)) C) (4a^(2)b^(2))/(a^(2) + b^(2)) D)none of these.