Home
Class 12
MATHS
[" If "x^(4)*y^(n)=1" ,prove that "],[qq...

[" If "x^(4)*y^(n)=1" ,prove that "],[qquad (dy)/(dx)=(-y(y+x log y))/(x(y log n+x))]

Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx)=(y(x ln y-y))/(x(y ln x-x))

If x^(y)y^(x),=1, prove that (dy)/(dx),=-(y(y+x log y))/(x(y log x+x))

If x^(y).y^(x)=1, prove that (dy)/(dx)=-(y(y+x log y))/(x(y log x+x))

If x^(y)=y^(x) , prove that (dy)/(dx)=((y)/(x)-log y)/((x)/(y)-log x)

If x^y.y^x = 1 , then prove that : dy/dx = (-y (y+x logx))/(x(y log x + x))

If y=x^(y^(x)) , prove that, (dy)/(dx)=(y log y(1+x logx log y))/(x logx(1-x logy)) .

If x^(y) = a^(x) , prove that (dy)/( dx) = ( x log _(e) a -y)/( x log_(e) x)

(dy)/(dx)=(x+y)ln(x+y)-1

If y^(x) = e^(y -x) , prove that (dy)/(dx) = ((1 + log y)^2)/(log y) .

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).