Home
Class 10
MATHS
" (y) "p(x)=x^(3)-6x^(2)+11x-6,g(x)=x^(2...

" (y) "p(x)=x^(3)-6x^(2)+11x-6,g(x)=x^(2)-5x+6

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=x^(3)-6x^(2)+11x-6,g(x)=x^(2)-3x+2

x^(3)-6x^(2)+11x-6=0

f(x)=x^(3)-6x^(2)+11x-6;g(x)=x-3

If p(x)=5x^(3)-6x^(2)+7x-6

Apply division algorithm to find the quotient q(x) and remainder r(x) on dividing f(x)=x^(3)-6x^(2)+11x-6byg(x)=x^(2)+x+1

check whether p(x) is a multiple of g(x) or not (i) p(x) =x^(3)-5x^(2)+4x-3,g(x) =x-2. (ii) p(x) =2x^(3)-11x^(2)-4x+5,g(x)=2x+1

check whether p(x) is a multiple of g(x) or not (i) p(x) =x^(3)-5x^(2)+4x-3,g(x) =x-2. (ii) p(x) =2x^(3)-11x^(2)-4x+5,g(x)=2x+1

Apply the division algorithm to find the quotient and remainder on dividing f(x)=x^(3)-6x^(2)+11x-6 by g(x)=x+2

Using factor theorem , show that g (x) is a factor of p(x) , when p(x)=2x^(4)+9x^(3)+6x^(2)-11x-6,g(x)=x-1

Write the quotient and remainder when we divide : (x^(3) - 6x^(2) + 11x - 6) by (x^(2) - 5x + 6)