Home
Class 12
MATHS
If f(x)=|(log)2x|, then f(1^+)=1 (b)...

If `f(x)=|(log)_2x|,` then `f(1^+)=1` (b) `f(1^-)=-1` `f(1)=1` (c) `f^(prime)(1)=-1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|(log)_(e)x|, then (a) f'(1^(+))=1 (b) f'(1^(-))=-1( c) f'(1)=1(d)f'(1)=-1

If f.(x)= log((1+x)/(1-x)) , then

If f(x)=log {(1+x)/(1-x)} , then f(x)+f(y) is

If f(x)=|(log)_(10)x|,t h e na tx=1 a. f(x) is continuous and f^(prime)(1)=(log)_(10)e b. f(x) is continuous and f^(prime)(1)=-(log)_(10)e c. f(x) is continuous and f^(prime)(1^-)=(log)_(10)e d. f(x) is continuous and f^(prime)(1^-)=-(log)_(10)e

If f(x)=(1-x)/(1+x) then f{f((1)/(x))}

Let y=f(x) be a parabola, having its axis parallel to the y-axis, which is touched by the line y=x at x=1. Then, (a) 2f(0)=1-f^(prime)(0) (b) f(0)+f^(prime)(0)+f^(0)=1 (c) f^(prime)(1)=1 (d) f^(prime)(0)=f^(prime)(1)

If f(x)=(x-1)/(x+1) then show that f(1/x)=-f(x) and f(-1/x)=(-1)/f(x)

If f(x)=log((1-x)/(1+x)),-1ltxlt1 , then f(-x)=f(x) .

If f(x)=log((1+x)/(1-x)), then (a) f(x_(1))f(x)=f(x_(1)+x_(2))(b)f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^(2)+x)(d)f(x_(1))+f(x_(2))=f((x_(1)+x_(2))/(1+x_(1)x_(2)))