Home
Class 12
MATHS
The equation of the plane containing the...

The equation of the plane containing the lines `vec r=a_1+lambda vec b and vec r=vec a_2+mu vec b` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation of the plane containing the lines vec r = vec (a_1) + lambda vec b and vec r = vec (a_2) + mu vec b is.............

Write the equation of the plane containing the lines vec r= vec a+lambda vec b\ a n d\ vec r= vec a+mu vec c

Write the equation of the plane containing the lines vec r= vec a+lambda vec b\ a n d\ vec r= vec a+mu vec c

The equation of the plane containing the parallel lines vec r=vec a+tvec c and vec r=vec b+phivec c is

Write the formula for the shortest distance between the lines vec r= vec a_1+lambda vec b_1 a n d\ vec r= vec a_2+mu vec b_2dot\

Write the condition for the lines vec r= vec a_1+lambda vec b_1 a n d\ vec r= vec a_2+mu vec b_2dot\ to be intersecting.

A Show that equation of angle bisectors of line vec r = a + lambdavec b and vec r = vec b + muvec a are vec r = (vec a + vec b) + gamma (| vec b | vec a | vec a)

The length of the perpendicular form the origin to the plane passing through the point a and containing the line vec r= vec b+lambda vec c is a. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c+ vec cxx vec a|) b. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c|) c. ([ vec a vec b vec c])/(| vec bxx vec c+ vec cxx vec a|) d. ([ vec a vec b vec c])/(| vec cxx vec a+ vec axx vec b|)

The length of the perpendicular form the origin to the plane passing through the point a and containing the line vec r= vec b+lambda vec c is a. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c+ vec cxx vec a|) b. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c|) c. ([ vec a vec b vec c])/(| vec bxx vec c+ vec cxx vec a|) d. ([ vec a vec b vec c])/(| vec cxx vec a+ vec axx vec b|)

The length of the perpendicular form the origin to the plane passing through the point a and containing the line vec r= vec b+lambda vec c is a. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c+ vec cxx vec a|) b. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c|) c. ([ vec a vec b vec c])/(| vec bxx vec c+ vec cxx vec a|) d. ([ vec a vec b vec c])/(| vec cxx vec a+ vec axx vec b|)