Home
Class 12
MATHS
If Cosalpha+Cosbeta+Cosgamma=0=Sinalph...

If `Cosalpha+Cosbeta+Cosgamma=0=Sinalpha+Sinbeta+Singamma` then `x^(sin(2alpha-beta-gamma) .x^(sin(2beta-gamma-alpha)). x^(sin(2gamma-alpha-beta)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma then sin(2alpha-beta-gamma)+sin(2beta-gamma-alpha)+sin(2gamma-alpha-beta)=

If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma then cos(2alpha-beta-gamma)+cos(2beta-gamma-alpha)+cos(2gamma-alpha-beta)=

If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma" then "sin3alpha+sin3beta+sin3gamma

If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma then sin3alpha+sin3beta+sin3gamma=

If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma" then "cos3alpha+cos3beta+cos3gamma

If cosalpha+cosbeta+cosgamma=0=sin alpha+sinbeta+singamma then cos^2alpha+cos^2beta+cos^2gamma=

If cos alpha+cosbeta+cosgamma = 0 = sinalpha + sinbeta + singamma then sin^2alpha+sin^2beta+sin^2gamma=

If cosalpha+coabeta+cosgamma=0=sinalpha+sinbeta+singamma then cos(alpha+beta)+cos(beta+gamma)+cos(gamma+alpha)=

If (cosalpha+cosbeta+cosgamma)=0, sinalpha+sinbeta+singamma=0 then show that sin3alpha+sin3beta+sin3gamma=3sin(alpha+beta+gamma)