Home
Class 12
MATHS
y^(2)-x^(2)(dy)/(dx)=xy^((dy)/(dx))...

y^(2)-x^(2)(dy)/(dx)=xy^((dy)/(dx))

Promotional Banner

Similar Questions

Explore conceptually related problems

y^2+x^2(dy)/(dx)=x y(dy)/(dx)

a(x(dy)/(dx)+2y)=xy(dy)/(dx)

x^(2)(dy)/(dx)+y^(2)=xy

The degree of the differential equation : xy((d^(2)y)/(dx^(2)))^(2)+x^(4)((dy)/(dx))^(3)-y(dy)/(dx)=0 is :

Find the order and the degree of the differential equation xy(d^(2)y)/(dx^(2))+x((dy)/(dx))^(2)-y((dy)/(dx))=0

Solve the following differential equations: (dy)/(dx)=1+x+y+xy( ii) y-x(dy)/(dx)=a(y^(2)+(dy)/(dx))

Write the order and degree of the differential equation xy((d^(2)y)/(dx^(2)))^(2)+x((dy)/(dx))^(3)-y(dy)/(dx)=0 .

Find the order and degree of the differential equation xy(d^(2)y)/(dx^(2))+x((dy)/(dx))^(2)-y(dy)/(dx)=0

The differential equations of all circle touching the x-axis at orgin is (a) (y^(2)-x^(2))=2xy((dy)/(dx)) (b) (x^(2)-y^(2))(dy)/(dx)=2xy ( c ) (x^(2)-y^(2))=2xy((dy)/(dx)) (d) None of these

The differential equations of all circle touching the x-axis at orgin is (a) (y^(2)-x^(2))=2xy((dy)/(dx)) (b) (x^(2)-y^(2))(dy)/(dx)=2xy ( c ) (x^(2)-y^(2))=2xy((dy)/(dx)) (d) None of these