Home
Class 14
MATHS
" Prove that "(3!)/(2(n+3))=sum(r=0)^(n)...

" Prove that "(3!)/(2(n+3))=sum_(r=0)^(n)(-1)^(r)((^nC_(r))/(r+iC_(r)))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (3!)/(2(n+3))=sum_(r=0)^(n)(-1)^(r)((^nC_(r))/(r+3C_(r)))

Prove that (3!)/(2(n+3))=sum_(r=0)^n(-1)^r((^n C_r)/(^(r+3)C_r))

Prove that (3!)/(2(n+3))=sum_(r=0)^n(-1)^r((^n C_r)/(^(r+3)C_r))

Prove that (3!)/(2(n+3))=sum_(r=0)^n(-1)^r((n C_r)/((r+3)C_3))

sum_(r=0)^(n)(-2)^(r)*(nC_(r))/((r+2)C_(r)) is equal to

sum_(r=1)^(n) (-1)^(r-1) ""^nC_r(a - r) =

sum_(r=1)^(n) (-1)^(r-1) ""^nC_r(a - r) =

Find the sum sum_(r=1)^(n)r^(2)(^nC_(r))/(n_(C_(r-1)))