Home
Class 14
MATHS
" Prove that "(3!)/(2(n+3))=sum(r=0)^(n)...

" Prove that "(3!)/(2(n+3))=sum_(r=0)^(n)(-1)^(r)((nC_(p))/(r+3))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (3!)/(2(n+3))=sum_(r=0)^(n)(-1)^(r)((^nC_(r))/(r+3C_(r)))

Prove that (3!)/(2(n+3))=sum_(r=0)^n(-1)^r((n C_r)/((r+3)C_3))

Prove that (3!)/(2(n+3))=sum_(r=0)^n(-1)^r((^n C_r)/(^(r+3)C_r))

Prove that (3!)/(2(n+3))=sum_(r=0)^n(-1)^r((^n C_r)/(^(r+3)C_r))

sum_(r=0)^(n)(-2)^(r)*(nC_(r))/((r+2)C_(r)) is equal to

Prove that sum_(r=0)^(n)(-1)^(r)nC_(r)[(1)/(2^(r))+(3)/(2^(2r))+(7)/(2^(3r))+(15)/(2^(4r))+...up to mterms]=(2^(mn)-1)/(2^(mn)(2^(n)-1))

Prove the following: sum_(r =0)^(n)(-1)^(r ) (3r+5).C_(r )=0

If x+y=1, prove that sum_(r=0)^(n)nC_(r)x^(r)y^(n-r)