Home
Class 12
MATHS
Let f(x)=int0^oo(e^(-xt))/(1+t^2)dt, the...

Let `f(x)=int_0^oo(e^(-xt))/(1+t^2)dt,` then value of prime `primef^(primeprime)(1/4)+f(1/4)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_0^xe^t(t-1)(t-2)dt , Then f decreases in the interval

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

Let f(x)=1/x^2 int_0^x (4t^2-2f'(t))dt then find f'(4)

If int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is