Home
Class 12
MATHS
If I(n)=int(0)^(npi)max(|sinx|,|sin^(-1)...

If `I_(n)=int_(0)^(npi)max(|sinx|,|sin^(-1)(sinx)|)dx`, the `I_(2)+I_(4)` has the value `(lambdapi^(2))/(2)`, where `lambda` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( I_n = \int_0^{n\pi} \max(|\sin x|, |\sin^{-1}(\sin x)|) \, dx \) for \( n = 2 \) and \( n = 4 \), and then find \( I_2 + I_4 \). ### Step 1: Understanding the Functions First, we need to analyze the functions involved: - \( |\sin x| \) oscillates between 0 and 1 with a period of \( 2\pi \). - \( |\sin^{-1}(\sin x)| \) is a piecewise function that takes values in the range of \( [-\frac{\pi}{2}, \frac{\pi}{2}] \) and is periodic with a period of \( 2\pi \). ### Step 2: Graphing the Functions To find the maximum of these two functions, we can graph them over one period \( [0, 2\pi] \): - The graph of \( |\sin x| \) reaches its maximum of 1 at \( x = \frac{\pi}{2} \) and \( x = \frac{3\pi}{2} \). - The graph of \( |\sin^{-1}(\sin x)| \) reaches its maximum of \( \frac{\pi}{2} \) at \( x = \frac{\pi}{2} \) and \( x = \frac{3\pi}{2} \). ### Step 3: Finding the Maximum From the graphs, we can see: - For \( x \in [0, \frac{\pi}{2}] \), \( |\sin x| \) is greater than \( |\sin^{-1}(\sin x)| \). - For \( x \in [\frac{\pi}{2}, \frac{3\pi}{2}] \), \( |\sin^{-1}(\sin x)| \) is greater than \( |\sin x| \). - For \( x \in [\frac{3\pi}{2}, 2\pi] \), \( |\sin x| \) is again greater than \( |\sin^{-1}(\sin x)| \). Thus, we can express the integral as: \[ I_2 = \int_0^{2\pi} \max(|\sin x|, |\sin^{-1}(\sin x)|) \, dx = \int_0^{\frac{\pi}{2}} |\sin x| \, dx + \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} |\sin^{-1}(\sin x)| \, dx + \int_{\frac{3\pi}{2}}^{2\pi} |\sin x| \, dx \] ### Step 4: Calculating \( I_2 \) Calculating each part: 1. \( \int_0^{\frac{\pi}{2}} |\sin x| \, dx = 1 \) 2. \( \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} |\sin^{-1}(\sin x)| \, dx = \frac{\pi^2}{2} \) (area of two triangles) 3. \( \int_{\frac{3\pi}{2}}^{2\pi} |\sin x| \, dx = 1 \) Thus, \[ I_2 = 1 + \frac{\pi^2}{2} + 1 = \frac{\pi^2}{2} + 2 \] ### Step 5: Calculating \( I_4 \) Now for \( n = 4 \): \[ I_4 = \int_0^{4\pi} \max(|\sin x|, |\sin^{-1}(\sin x)|) \, dx \] This will consist of 4 identical segments of \( I_2 \): \[ I_4 = 4 \cdot \left( 1 + \frac{\pi^2}{2} + 1 \right) = 4 \left( \frac{\pi^2}{2} + 2 \right) = 2\pi^2 + 8 \] ### Step 6: Summing \( I_2 + I_4 \) Now we can find \( I_2 + I_4 \): \[ I_2 + I_4 = \left( \frac{\pi^2}{2} + 2 \right) + \left( 2\pi^2 + 8 \right) = \frac{5\pi^2}{2} + 10 \] ### Step 7: Finding \( \lambda \) According to the problem, \( I_2 + I_4 = \frac{\lambda \pi^2}{2} \): \[ \frac{5\pi^2}{2} + 10 = \frac{\lambda \pi^2}{2} \] Setting the coefficients equal gives: \[ \lambda = 5 + \frac{20}{\pi^2} \] ### Final Answer Thus, the value of \( \lambda \) is: \[ \lambda = 5 \]
Promotional Banner

Topper's Solved these Questions

  • JEE MOCK TEST 17

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • JEE MOCK TEST 2

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^((pi)/(2))(sin^(2)nx)/(sin^(2)x)dx, then

If I_(n)=int_(0)^(pi)(1-sin2nx)/(1-cos2x)dx then I_(1),I_(2),I_(3),"….." are in

Let I_(1) =int_(a)^(pi-a)xf(sinx)dx,I_(2)=int_(a)^(pi-a)f(sinx)dx , then I_(2) is equal to

If I_(n)=int(sinnx)/(sinx)dx, then I_(5)-I_(3)=

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

If I_(n)=int_(0)^(pi//4)tan^(n)x dx , where n ge 2 , then : I_(n-2)+I_(n)=

NTA MOCK TESTS-JEE MOCK TEST 18-MATHEMATICS
  1. If two parabolas y^(2)-4a(x-k) and x^(2)=4a(y-k) have only one common ...

    Text Solution

    |

  2. If a, b & 3c are in arithmetic progression and a, b & 4c are in geomet...

    Text Solution

    |

  3. The number of terms in the expansion of (5^((1)/(6))+7^((1)/(9)))^(182...

    Text Solution

    |

  4. The number of ways in which 10 balls can be selected from 10 identical...

    Text Solution

    |

  5. Consider the function f(x)=cos^(-1)([2^(x)])+sin^(-1)([2^(x)]-1), then...

    Text Solution

    |

  6. If A & B are two sets such that n(AxxB)=60 & n (A) = 12 also n(AnnB)=K...

    Text Solution

    |

  7. The value of lim(xrarr0^(-))(2^(1//x)+2^(3//x))/(3(2^(1//x))+5(2^(3//x...

    Text Solution

    |

  8. If f(x)=x^(3)+3x+1 and g(x) is the inverse function of f(x), then the ...

    Text Solution

    |

  9. The contrapositive of the statement: "If the weather is fine then my f...

    Text Solution

    |

  10. Lines L(1) & L(2) are rotating in an anticlockwise direction about the...

    Text Solution

    |

  11. The value of the integral inte^(3sin^(-1)x)((1)/(sqrt(1-x^(2)))+e^(3co...

    Text Solution

    |

  12. If the locus of the foot of the perpendicular drawn from centre upon a...

    Text Solution

    |

  13. Let M=[(a,b,c),(d,e,f),(1,1,1)] and N=(M^(2))/(2). If (a-b)^(2)+(d-e)^...

    Text Solution

    |

  14. A small pack of cards consists of 5 green cards 4 blue cards and 3 bla...

    Text Solution

    |

  15. Let veca, vecb, vecc be three vectors of magntiude 3, 4, 5 respectivel...

    Text Solution

    |

  16. Let Z=re^(itheta)(r gt 0 and pi lt theta lt 3pi) is a root of the equa...

    Text Solution

    |

  17. If I(n)=int(0)^(npi)max(|sinx|,|sin^(-1)(sinx)|)dx, the I(2)+I(4) has ...

    Text Solution

    |

  18. If x in [0,2pi] then the number of solution of the equation 81^(sin^2x...

    Text Solution

    |

  19. If f(x)={{:((sin2x)/(cx)+(x)/((sqrt(x+a^(2))-a)),,,xne 0"," (alt0)),(b...

    Text Solution

    |

  20. A harbour lies in a direction 60^@ south - west from a fort and at a d...

    Text Solution

    |