Home
Class 12
MATHS
If f(x) = tan^(-1) ((2cot^(2)x)/(1 + cos...

If `f(x) = tan^(-1) ((2cot^(2)x)/(1 + cos^(2)x))` then `d/(dx) (f(f(x)))` at `x = pi/2` is

A

0

B

1

C

`-1`

D

`1/2`

Text Solution

Verified by Experts

The correct Answer is:
A

`f(x) = tan^(-1)((2cot^2 x)/(1+cos^2 x))`
`= tan^(-1)((2 cos^2 x)/(1-cos^4 x))`
`=2 tan^(-1)(cos^(2)x)`
`f'(x) = (-2)/(1+cos^4 x) [ 2 sin x cos x]`
`f'(x) = (4 sin x. Cos x)/(1 + sin^4 x)`
`f' ((pi)/2) = 0`
`d/(dx) f(f(x)) - f'(f(x)) f'(x)`
`d/(dx) f(f(x))` at `(x - pi/2) = f'(f((pi)/2))f'(pi/2) = 0`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=tan^(-1)((3x-x^(3))/(1-3x^(2))) then (d)/(dx)(f(x)) is equal to

f(x) = sin^(-1)(sin x) then (d)/(dx)f(x) at x = (7pi)/(2) is

If y =int _(u(x))^(v(x))f(t) dt , let us define (dy)/(dx) in a different manner as (dy)/(dx) = v'(x) f^(2)(v(x)) - u'(x) f^(2)(u(x)) alnd the equation of the tangent at (a,b) as y -b = (dy/dx)_((a,b)) (x-a) If F(x) = int_(1)^(x)e^(t^(2)//2)(1-t^(2))dt , then d/(dx) F(x) at x = 1 is

If (d(f(x))/(dx)=(1)/(1+x^(2)) then (d)/(dx){f(x^(3))} is

int[(d)/(dx)f(x)]dx=

If a function is invertible the graph of its inverse is the mirror image of the function in y=x. If f^(-1)(x) is the inverse function of f(x), then f(f^(-1)(x))=f^(-1)(f(x))=x . The value of (d)/(dx)(f^(-1)(x))" at " x = 9 " for "f(x)=x^(3)-2x^(-3)+10" is "(x gt 0)

Let f(x) =sinxandg(x)=x^(3) (d)/(dx)f(g(x)) at x=(pi)/(2) is ________.

If (d)/(dx)[f(x)]=(1)/(1+x^(2))," then: "(d)/(dx)[f(x^(3))]=