Home
Class 12
MATHS
If f(x) is continuous at x=0, where f(x)...

If `f(x)` is continuous at `x=0`, where `f(x)=(sqrt(1+x)-root3(1+x))/(x)`, for `x!=0`, then `f(0)=`

A

`1/3`

B

`1/2`

C

`5/6`

D

`1/6`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f(0) \) for the function defined as \[ f(x) = \frac{\sqrt{1+x} - \sqrt[3]{1+x}}{x} \quad \text{for } x \neq 0, \] and given that \( f(x) \) is continuous at \( x = 0 \), we need to evaluate the limit of \( f(x) \) as \( x \) approaches 0. ### Step-by-Step Solution: 1. **Identify the limit**: We need to find \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt[3]{1+x}}{x}. \] 2. **Substituting \( x = 0 \)**: If we substitute \( x = 0 \) directly into the function, we get: \[ f(0) = \frac{\sqrt{1+0} - \sqrt[3]{1+0}}{0} = \frac{1 - 1}{0} = \frac{0}{0}, \] which is an indeterminate form. Therefore, we can apply L'Hôpital's Rule. 3. **Apply L'Hôpital's Rule**: According to L'Hôpital's Rule, we differentiate the numerator and the denominator separately: - **Differentiate the numerator**: - The derivative of \( \sqrt{1+x} \) is \( \frac{1}{2\sqrt{1+x}} \). - The derivative of \( \sqrt[3]{1+x} \) is \( \frac{1}{3(1+x)^{2/3}} \). - Thus, the derivative of the numerator is: \[ \frac{1}{2\sqrt{1+x}} - \frac{1}{3(1+x)^{2/3}}. \] - **Differentiate the denominator**: The derivative of \( x \) is \( 1 \). 4. **Rewrite the limit**: Now, we can rewrite the limit as: \[ \lim_{x \to 0} \left( \frac{\frac{1}{2\sqrt{1+x}} - \frac{1}{3(1+x)^{2/3}}}{1} \right). \] 5. **Evaluate the limit**: Now substitute \( x = 0 \): \[ \lim_{x \to 0} \left( \frac{\frac{1}{2\sqrt{1+0}} - \frac{1}{3(1+0)^{2/3}}}{1} \right) = \frac{\frac{1}{2 \cdot 1} - \frac{1}{3 \cdot 1}}{1} = \frac{\frac{1}{2} - \frac{1}{3}}{1}. \] 6. **Simplify the expression**: To simplify \( \frac{1}{2} - \frac{1}{3} \): \[ \frac{1}{2} - \frac{1}{3} = \frac{3}{6} - \frac{2}{6} = \frac{1}{6}. \] 7. **Conclusion**: Therefore, we find that \[ \lim_{x \to 0} f(x) = \frac{1}{6}. \] Since \( f(x) \) is continuous at \( x = 0 \), we conclude that \[ f(0) = \frac{1}{6}. \] ### Final Answer: \[ f(0) = \frac{1}{6}. \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL DISTRIBUTION

    NIKITA PUBLICATION|Exercise MCQS|77 Videos
  • DEFINITE INTEGRAL

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|243 Videos

Similar Questions

Explore conceptually related problems

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x^(@))/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(4^(x)-e^(x))/(6^(x)-1) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(log 100 + log (0.01 +x))/(3x) , for x!=0 , then f(0)=

If f(x) = is continuous at x=0 , where f(x)=((1-cos2x)(3+cos x))/(x tan 4x) , for x!=0 , then f(0)=

If f(x) = is continuous at x=0 , where f(x)=((1-cos2x)(3+cos x))/(x tan 4x) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(log(2+x)-log(2-x))/(tan x) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((e^(2x)-1)tan x)/( x sin x) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((3^(sin x)-1)^(2))/(x log (1-x)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(4^(x)-2^(x+1)+1)/(1-cos x) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(sin (pi cos^(2)x))/(x^(2)) , for x!=0 , then f(0)=

NIKITA PUBLICATION-CONTINUITY-MULTIPLE CHOICE QUESTIONS
  1. If f(x) is continuous at x=16, where f(x)={:{((x^(8)-(256)^(4))/(x^(4...

    Text Solution

    |

  2. If f(x) is continuous at x=0 , where f(x)=((27-2x)^(1/3)-3)/(9-3(243+...

    Text Solution

    |

  3. If f(x) is continuous at x=0, where f(x)=(sqrt(1+x)-root3(1+x))/(x), f...

    Text Solution

    |

  4. If f(x) is continuous at x=4, where f(x)=(x^(4)-64x)/(sqrt(x^(2)+9)-5)...

    Text Solution

    |

  5. If f(x)=(sqrt(a^2-a x+x^2)-sqrt(a^2+a x+x^2))/(sqrt(a+x)-sqrt(a-x)) is...

    Text Solution

    |

  6. If f(x) is continuous at x=2a, where f(x)=(sqrt(x)-sqrt(2a)+sqrt(x-2a)...

    Text Solution

    |

  7. If f(x) is continuous at x=sqrt(2), where f(x)=(sqrt(3+2x)-(sqrt(2)+1)...

    Text Solution

    |

  8. If f(x) is continuous at x=5, where f(x)=(sqrt(3+sqrt(4+x))-sqrt(6))/(...

    Text Solution

    |

  9. If f(x) is continuous at x=0, where f(x)=sin x-cos x, for x!=0, then ...

    Text Solution

    |

  10. If f(x) is continuous at x=pi/2, where f(x)=(sqrt(2)-sqrt(1+sin x))/(...

    Text Solution

    |

  11. If f(x) is continuous at x=pi/4, where f(x)=(1-tanx)/(1-sqrt(2)sin x),...

    Text Solution

    |

  12. If f(x) is continuous at x=0, where f(x)=(sin (pi cos^(2)x))/(x^(2)), ...

    Text Solution

    |

  13. If f(x) is continuous at x=(pi)/(4) where f(x)=(2sqrt(2)-(cos x+sin x)...

    Text Solution

    |

  14. If f(x) is continuous at theta= pi/4, where f(theta)={:{((1-tan theta...

    Text Solution

    |

  15. The function f(x)=(1-sinx+cosx)/(1+sinx+cosx) is not defined at x=pi....

    Text Solution

    |

  16. If f(x) is continuous at x=pi/2, where f(x)=(cos x )/(sqrt(1-sinx)), ...

    Text Solution

    |

  17. If f(x) is continuous at x= pi/4, where f(x)=(cos x- sin x)/(cos 2x),...

    Text Solution

    |

  18. If f(x) is continuous at x= pi/4, where f(x)=(2-cosec^(2)x)/(cot x-1)...

    Text Solution

    |

  19. If f(x) is continuous at x=0, where f(x)=(sin(x^(2)-x))/(x), for x!=0...

    Text Solution

    |

  20. If f(x) is continuous at x=0, where f(x) = {:{((x cos x+3tan x)/(x^(2...

    Text Solution

    |