Home
Class 12
MATHS
If f(x) is continuous at x=0, where f(x)...

If `f(x)` is continuous at `x=0`, where `f(x)=(e^(x^(2))-cosx)/(x^(2))`, for `x!=0`, then `f(0)=`

A

`3/2`

B

`1/2`

C

1

D

`(-1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f(0) \) for the function \[ f(x) = \frac{e^{x^2} - \cos x}{x^2} \quad \text{for } x \neq 0, \] we need to ensure that the function is continuous at \( x = 0 \). For continuity at \( x = 0 \), we need to find \[ f(0) = \lim_{x \to 0} f(x). \] ### Step 1: Calculate the limit as \( x \) approaches 0 We need to evaluate \[ \lim_{x \to 0} \frac{e^{x^2} - \cos x}{x^2}. \] ### Step 2: Substitute \( x = 0 \) Substituting \( x = 0 \) directly into the function gives us an indeterminate form \( \frac{0}{0} \): \[ e^{0^2} - \cos(0) = 1 - 1 = 0 \quad \text{and} \quad 0^2 = 0. \] ### Step 3: Apply L'Hôpital's Rule Since we have the indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] if the limit on the right exists. Here, we differentiate the numerator and the denominator. - The derivative of the numerator \( e^{x^2} - \cos x \) is: \[ \frac{d}{dx}(e^{x^2}) = 2x e^{x^2} \quad \text{and} \quad \frac{d}{dx}(-\cos x) = \sin x. \] Thus, the derivative of the numerator is: \[ 2x e^{x^2} + \sin x. \] - The derivative of the denominator \( x^2 \) is: \[ \frac{d}{dx}(x^2) = 2x. \] ### Step 4: Rewrite the limit using L'Hôpital's Rule Now we can rewrite the limit: \[ \lim_{x \to 0} \frac{2x e^{x^2} + \sin x}{2x}. \] ### Step 5: Simplify the expression We can simplify this limit: \[ \lim_{x \to 0} \left( \frac{2x e^{x^2}}{2x} + \frac{\sin x}{2x} \right) = \lim_{x \to 0} \left( e^{x^2} + \frac{\sin x}{2x} \right). \] ### Step 6: Evaluate the limit Now we evaluate each part: 1. As \( x \to 0 \), \( e^{x^2} \to e^0 = 1 \). 2. The limit \( \frac{\sin x}{x} \to 1 \) as \( x \to 0 \), so \( \frac{\sin x}{2x} \to \frac{1}{2} \). Putting it all together: \[ \lim_{x \to 0} \left( e^{x^2} + \frac{\sin x}{2x} \right) = 1 + \frac{1}{2} = \frac{3}{2}. \] ### Conclusion Thus, the value of \( f(0) \) is \[ f(0) = \frac{3}{2}. \] ---
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL DISTRIBUTION

    NIKITA PUBLICATION|Exercise MCQS|77 Videos
  • DEFINITE INTEGRAL

    NIKITA PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|243 Videos

Similar Questions

Explore conceptually related problems

If f(x) is continuous at x=0 , where f(x)=((e^(3x)-1)sin x^(@))/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(sin (pi cos^(2)x))/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(3-4cos x+cos 2x)/(x^(2)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(4^(x)-e^(x))/(6^(x)-1) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(sin(x^(2)-x))/(x) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(4^(x)-2^(x+1)+1)/(1-cos x) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=(3-4cos x+cos 2x)/(x^(4)) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((e^(2x)-1)tan x)/( x sin x) , for x!=0 , then f(0)=

If f(x) is continuous at x=0 , where f(x)=((4^(sin x)-1)^(2))/(x log (1+2x)) , for x!=0 , then f(0)=

NIKITA PUBLICATION-CONTINUITY-MULTIPLE CHOICE QUESTIONS
  1. If f(x) is continuous at x=0, where f(x)=((e^(2x)-1)tan x)/( x sin x)...

    Text Solution

    |

  2. If f(x) is continuous at x=0, where f(x)=((e^(3x)-1)sin x^(@))/(x^(2))...

    Text Solution

    |

  3. If f(x) is continuous at x=0, where f(x)=(e^(x^(2))-cosx)/(x^(2)), for...

    Text Solution

    |

  4. If f(x) is continuous at x=0, where f(x)={:{((3^(x)-3^(-x))/(sin x)",...

    Text Solution

    |

  5. If f(x) is continuous at x=0, where f(x)={:{((9^(x)-9^(-x))/(sin x)"...

    Text Solution

    |

  6. If f(x) is continuous at x=0, where f(x)=(10^(x)+7^(x)-14^(x)-5^(x))/...

    Text Solution

    |

  7. If f(x) is continuous at x=0, where f(x)=((5^(x)-2^(x))x)/(cos 5x-cos...

    Text Solution

    |

  8. If f(x) is continuous at x=0, where f(x)=(4^(x)-2^(x+1)+1)/(1-cos x),...

    Text Solution

    |

  9. If f(x) is continuous at x=pi/2, where f(x)=(3^(x- pi/2)-6^(x- pi/2))...

    Text Solution

    |

  10. If f(x) is continuous at x=a,a>0, where f(x)=[(a^x-x^a)/(x^x-a^a), for...

    Text Solution

    |

  11. If f(x) is continuous at x=0, where f(x)={:{((log (1+kx))/(sin x)", f...

    Text Solution

    |

  12. For what value of k, the function defined by f(x)={((log(1+2x)sin x^...

    Text Solution

    |

  13. If f(x) is continuous at x=0, where f(x)=(log sec^(2)x)/(x sin x), fo...

    Text Solution

    |

  14. If f(x) is continuous at x=0, where f(x)=(log(1+x^(2))-log(1-x^(2)))/...

    Text Solution

    |

  15. If f(x) is continuous at x=0, where f(x)=(log(1+x+x^(2))+log(1-x+x^(2...

    Text Solution

    |

  16. If f(x) is continuous at x=0, where f(x)=(log(2+x)-log(2-x))/(tan x),...

    Text Solution

    |

  17. If f(x) is continous at x=0, where f(x) ((e^(3x)-1)sin x)/(xlog(1+x)),...

    Text Solution

    |

  18. If f(x)=((8^(x)-1)^(2))/(sin x log (1+ x/4)) in [-1, 1] - {0}, then f...

    Text Solution

    |

  19. If f(x) is continuous at x=0, where f(x)=((4^(sin x)-1)^(2))/(x log (...

    Text Solution

    |

  20. If f(x) is continuous at x=0, where f(x)=((3^(sin x)-1)^(2))/(x log (...

    Text Solution

    |