Home
Class 12
MATHS
[" If "z(1)" and "z(2)" are two non-zero...

[" If "z_(1)" and "z_(2)" are two non-zero "],[" complex numbers such that "],[|z_(1)+z_(2)|=|z_(1)|+|z_(2)|" then "Arg z_(1)],[Arg z_(2)" is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(1) and z_(2) are two non-zero complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| , then arg. z_(1)- arg. z_(2) equals :

If z_(1)" and "z_(2) are two non-zero complex numbers such that |z_(1)+z_(2)|=|z_1|+|z_(2)| , then arg z_(1)- arg z_(2) is equal to

If |z_(1)+ z_(2)|=|z_(1)|+|z_(2)| , then arg z_(1) - arg z_(2) is

If z_(1) and z_(2), are two non-zero complex numbers such tha |z_(1)+z_(2)|=|z_(1)|+|z_(2)| then arg(z_(1))-arg(z_(2)) is equal to

If z_(1)and z_(2) be any two non-zero complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| then prove that, arg z_(1)=arg z_(2) .

If z_(1)" and "z_(2) are two non-zero complex numbers such that |z_(1)+z_(2)|=|z_1|+|z_(2)| , then arg ((z_1)/(z_2)) is equal to

If z_(1) and z_(2) are two non-zero complex numbers such that |z_(1) + z_(2)| = |z_(1)| + |z_(2)| , then arg ((z_(1))/(z_(2))) is equal to a)0 b) -pi c) -(pi)/(2) d) (pi)/(2)