Home
Class 12
MATHS
x=e^(+)(sin t+cos(),y=e^(t)(sin t-cos t)...

x=e^(+)(sin t+cos(),y=e^(t)(sin t-cos t)

Promotional Banner

Similar Questions

Explore conceptually related problems

x=e^t (sin t + cos t ),y=e^t(sin t -cos t)

Find dy/dx x=e^t (sin t + cos t ),y=e^t(sin t -cos t)

If x=ae^(t)(sin t+cos t) and y=ae^(t)(sin t-cos t),quad prove that (dy)/(dx)=(x+y)/(x-y)

Find dy/dx when x = e^t (sin t + cos t), y = e^t (sin t - cos t)

If x= e^t (sin t - cos t) , y= e^t (sin t + cos t) , find dy/dx at t= pi/4

If x = e ^(t ) sin t, y = e ^(t) cos t, then (d ^(2) y )/(dx ^(2)) at t = pi is

7. x=a(cos t+t sin t),y=a(sin t-t cos t) find dy/dx

x = a (cos t + sin t), y = a (sin t-cos t)

For the curve x = e^(t) cos t, y = e^(t) sin t the tangent line is parallel to x-axis when t is equal to

If x=e^(t)sin t,y=e^(t)cos t then (d^(2)y)/(dx^(2)) at x=pi is