Home
Class 12
MATHS
The value of lim(x->2) ([2-x]+[x-2]-x) ...

The value of `lim_(x->2) ([2-x]+[x-2]-x)` equals (where [.] denotes greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr1([x]+[x]) , (where [.] denotes the greatest integer function )

x→1 lim ​ (1−x+[x−1]+[1−x]) is equal to (where [.] denotes greatest integer function)

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

The value of lim_(x->pi/4)(1+[x])^(1//ln(tanx)) (where[.] denote the greatest integer function) is equal to

The value of lim_(x->pi/4)(1+[x])^(1//ln(tanx)) (where[.] denote the greatest integer function) is equal to

The value of lim_(x->0) [x^2/(sin x tan x)] (Wherer [*] denotes greatest integer function) is

The value of int_1^2(x^([x^2])+[x^2]^x)dx , where [.] denotes the greatest integer function, is equal to

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to