Home
Class 11
MATHS
If A=(t^2,2t), B=(1/t^2,-2/t) and S=(1,0...

If `A=(t^2,2t), B=(1/t^2,-2/t)` and `S=(1,0)` then `1/(SA)+1/(SB)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If A = (t^2,2t) and B = (1/t^2,-2/t) and S = (1,0), then show that 1/(SA)+1/(SB)=1

If A = (at^(2), 2at ) , B= ((a)/(t^(2)),- (2a)/(t) ), S(a, 0) then (1)/(SA) + (1)/(SB) =

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

if sinx =(2t)/(1+t^(2)) , tany= (2t)/(1- t^(2)) then (dy)/(dx) is equal to

If A^T=[(-2,3),(1,2)] and B =[(-1,0),(1,2)] ,then find (A +2B)^T .

If x=(1+t)/(t^3),y=3/(2t^2)+2/t , then x((dy)/(dx))^3-(dy)/(dx) is equal to (a) 0 (b) -1 (c) 1 (d) 2