Home
Class 12
MATHS
int(0)^(oo)(dx)/(x^(2)sqrt(a^(2)+n^(2)))...

int_(0)^(oo)(dx)/(x^(2)sqrt(a^(2)+n^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_(a)^(oo) (dx)/(x^(4)sqrt(a^(2) + x^(2)))=(2-sqrt(2))/(3a^(4))

int_(0)^(oo)(dx)/([x+sqrt(1+x^(2))]^(n)

If n gt 1 . Evaluate int_(0)^(oo)(dx)/((x+sqrt(1+x^(2)))^(n))

I=int_(0)^(oo)(x)/((x^(2)+a^(2))^(2))dx

If n>1, then int_(0)^(oo)(dx)/((x+sqrt(1+x^(2)))^(n)) equals

int_(0)^(oo)(dx)/((x+sqrt(x^(2)+1))^(3))=

int_(0)^(oo) (dx)/((x+sqrt(x^(2)+1))^(3))=

Show that int_(0)^(oo) (dx)/((x+sqrt(1+x^(2)))^(n))=(n)/(n^(2)-1), (n in N, n gt 1)

int_(0)^(oo) (dx)/([x+sqrt(x^(2)+1)]^(3))dx=

int_(0)^(oo) (dx)/([x+sqrt(x^(2)+1)]^(3))dx=