Home
Class 12
MATHS
The value of lim(n to oo)(3^n+5^n+7^n)^(...

The value of `lim_(n to oo)(3^n+5^n+7^n)^(1/n)` equals to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n to oo) (3^(n)+4^(n))^(1//n) is equal to

lim_(n rarr oo)(3^(n)+5^(n)+7^(n))^(1/n) is equal to

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

The value of lim_(n->oo) n^(1/n)

The value of lim_(n to oo) [(n!)/(n^(n))]^((1)/(n)) is equal to -

The value of Lim_(n to oo) n!/((n+1)!-n!)

Let a=n(a+(1)/(In(n))) and b=(n+(1)/(ln(n)))^(n). The value of lim_(n rarr oo)((a)/(b)) is equal to

lim_(n to oo) (5^n+3^n)/(5^n-3^n) =

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =