Home
Class 12
MATHS
lim(x->[a]) (e^{x}-{x}-1)/({x}^2 Where {...

`lim_(x->[a]) (e^{x}-{x}-1)/({x}^2` Where {x} denotes the fractional part of x and [x] denotes the integral part of a.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={x^2}-({x})^2, where (x) denotes the fractional part of x, then

If f(x)-{x^(2)}-({x})^(2), where (x) denotes the fractional part of x, then

lim_(x->1) (x-1){x}. where {.) denotes the fractional part, is equal to:

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

lim_(x rarr1)(x-1){x}. where {.) denotes the fractional part,is equal to:

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

Evaluate the following limits (if exists), where {,} denotes the fractional part of x and [,] denotes the greatest integer part lim_(x rarr 0) [(1+x)^(1/x)+e(x-1)]/x