Home
Class 12
MATHS
If (4/5)^(n) = sqrt((5/4)^(3)), then n =...

If `(4/5)^(n) = sqrt((5/4)^(3))`, then n = ?

A

`-3/2`

B

`-1`

C

`-2/3`

D

`2/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\frac{4}{5})^{n} = \sqrt{(\frac{5}{4})^{3}}\), we will follow these steps: ### Step 1: Rewrite the square root as an exponent The square root can be expressed as an exponent of \(\frac{1}{2}\). Thus, we can rewrite the right side of the equation: \[ \sqrt{(\frac{5}{4})^{3}} = \left(\frac{5}{4}\right)^{3 \cdot \frac{1}{2}} = \left(\frac{5}{4}\right)^{\frac{3}{2}} \] ### Step 2: Rewrite the fraction \(\frac{5}{4}\) We know that \(\frac{5}{4}\) can be rewritten as \(\left(\frac{4}{5}\right)^{-1}\). Therefore, we can express the right side as: \[ \left(\frac{5}{4}\right)^{\frac{3}{2}} = \left(\left(\frac{4}{5}\right)^{-1}\right)^{\frac{3}{2}} = \left(\frac{4}{5}\right)^{-\frac{3}{2}} \] ### Step 3: Set the bases equal Now we have: \[ \left(\frac{4}{5}\right)^{n} = \left(\frac{4}{5}\right)^{-\frac{3}{2}} \] Since the bases are the same, we can set the exponents equal to each other: \[ n = -\frac{3}{2} \] ### Final Answer Thus, the value of \(n\) is: \[ n = -\frac{3}{2} \]
Promotional Banner

Topper's Solved these Questions

  • IMPROVING YOUR MATH SCORE

    ENGLISH SAT|Exercise BASIC MATH PROBLEMS IN SETTINGS|6 Videos
  • HIGHER DEGREE POLYNOMIALS

    ENGLISH SAT|Exercise EXERCISES|6 Videos
  • INTERMEDIATE ALGEBRA/COORDINATE GEOMETRY

    ENGLISH SAT|Exercise EXERCISE|12 Videos

Similar Questions

Explore conceptually related problems

If a+bsqrt(5)=(4-3sqrt(5))/(4+3sqrt(5)) , then find the values of a and b.

Evaluate : (i) i^(135) (ii) i^(-47) (iii) (-sqrt(-1))^(4n +3) , n in N (iv) sqrt(-25) + 3sqrt(-4) + 2 sqrt(-9)

If 4cos36^(@)+cot(7(1^(@))/(2))=sqrt(n_(1))+sqrt(n_(2))+sqrt(n_(3))+sqrt(n_(4))+sqrt(n_(5))+sqrt(n_(6)) , then the value of ((Sigma_(i=1)^(6)n_(i)^(2))/(10)) is equal to

Given x, y in R , x^(2) + y^(2) gt 0 . Then the range of (x^(2) + y^(2))/(x^(2) + xy + 4y^(2)) is (a) ((10 - 4 sqrt(5))/(3),(10 + 4 sqrt(5))/(3)) (b) ((10 - 4 sqrt(5))/(15),(10 + 4 sqrt(5))/(15)) (c) ((5- 4 sqrt(5))/(15),(5 + 4 sqrt(5))/(15)) (d) ((20- 4 sqrt(5))/(15),(20 + 4 sqrt(5))/(15))

If R, n are positive integers, n is odd, 0lt F lt1" and if " (5sqrt(5)+11)^(n)=R+F, then prove that (R+F).F=4^(n)

(lim)_(xvecoo)(2. x^(1//2)+3. x^(1//3)+4. x^(1//4)++ndotx^(1//n))/((3x-4)^(1//2)+(3x-4)^(1-3)+(3x-4^)^(1//3)++(3x-4)^(1//n)) (here n in N ,ngeq2 ) is equal to 1 dot2/(sqrt(3)) 2. (sqrt(3))/2 3. 1/2 4. 1/(sqrt(3)) 5. 2

If n in N such that (7 + 4 sqrt(3))^(n) = I + F , then IF is

Let T_(n)=(1)/((sqrt(n)+sqrt(n+1))(4sqrt(n)+4sqrt(n+1))) and S_(n)=sum_(r=1)^(n)T_(r) then find S_(15) .

Find the value of n such that "(i) "^(n)P_(5) =42 xx ""^(n)P_(3), n gt 4 " (ii) "(""^(n)P_(4))/(" "^(n-1)P_(4))=(5)/(3), n gt 4.

Find n if (5^(3))^(4)=(5^(2))^(n)