Home
Class 12
MATHS
tan^(4)n*dx...

tan^(4)n*dx

Promotional Banner

Similar Questions

Explore conceptually related problems

If int(tan^(2)x+tan^(4)x)dx=((1)/(n))tan^(n)x+c, then n=

I_(n)=int_(0)^(pi//4) tan^(n)x dx , where n in N Statement-1: int_(0)^(pi//4) tan^(4)x dx=(3pi-8)/(12) Statement-2: I_(n)+I_(n-2)=(1)/(n-1)

I_(n)=int_(0)^(pi//4) tan^(n)x dx , where n in N Statement-1: int_(0)^(pi//4) tan^(4)x dx=(3pi-8)/(12) Statement-2: I_(n)+I_(n-2)=(1)/(n-1)

A:int_(0)^(pi//4)(tan^(6)x+tan^(4)x)dx=(1)/(5) R:int_(0)^(pi//4)(tan^(n)x+tan^(n-2)x)dx=(1)/(n-1)

Show that int_(0)^((pi)/(2))(tan^(4)x)/(1+tan^(4)x)dx=(pi)/(4)

Differentiate tan^(4)x .

If I_(n)=int_(0)^(pi//4)tan^(n)x dx, then 7(I_(6)+I_(8))=

If I_(n)=int_(0)^((pi)/(4)) tan^(n)x dx , then the value of (I_(8)+I_(6)) is -

If I_(n)=int_(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then