Home
Class 12
MATHS
Let the function f(x) be defined as belo...

Let the function `f(x)` be defined as below `f(x)=sin^(-1) lambda+x^2` when `0 < x < 1` and `f(x) = 2x` when `x>=1` . `f(x)` can have a minimum at `x=1` then value of `lambda` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let the function f(x) be defined as below f(x)=cos^(-1) mu+x^2 when 0 =1 . f(x) can have a local minimum at x=1 then value of mu is

Let the function f be defined by f(x)=((2x+1)/(1-3x)) then f^(-1)(x) is

Let the function f be defined by f(x) = "x sin" (1)/(x) , when x ne 0 = 0 , when x = 0. Then at x = 0, f is :

Let a function f:(1, oo)rarr(0, oo) be defined by f(x)=|1-(1)/(x)| . Then f is

f(x)={([x]+[x], "when" x ne 2),(lambda, "when" x = 2):} If f(x) is continuous at x = 2, the value of lambda will be

f(x) ={{:([x]+[-x], "when" , x ne 2),(lambda, "when", x =2):} , If f(x) is continous at x=2, the value of lambda will be:

Let a function f(x), x ne 0 be such that f(x)+f((1)/(x))=f(x)*f((1)/(x))" then " f(x) can be

Let a function f(x), x ne 0 be such that f(x)+f((1)/(x))=f(x)*f((1)/(x))" then " f(x) can be