Home
Class 10
MATHS
[theta],[=],[vdots],[11],[*],[1],[*],[+]...

[theta],[=],[vdots],[11],[*],[1],[*],[+],[*],[1],[omega]

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unit, then the value of the determinant |[1,omega,omega+1],[omega+1,1,omega],[omega,omega+1,1]|=

If omega is a complex cube root of unity then the value of the determinant |[1,omega,omega+1] , [omega+1,1,omega] , [omega, omega+1, 1]| is

If f(theta)=det[[1,1,-11,e^(i theta),11,-1,-e^(-i theta)]]

If omega is the complex cube root of unity then |[1,1+i+omega^2,omega^2],[1-i,-1,omega^2-1],[-i,-i+omega-1,-1]|=

If omega is the complex cube root of unity then |[1,1+i+omega^2,omega^2],[1-i,-1,omega^2-1],[-i,-i+omega-1,-1]|=

If omega is the complex cube root of unity then |[1,1+i+omega^2,omega^2],[1-i,-1,omega^2-1],[-i,-i+omega-1,-1]|=

Let omega=-(1)/(2)+i(sqrt(3))/(2). Then the value of the determinant det[[1,1,11,1,omega^(2)1,omega^(2),omega^(4)]]3 omega(omega-1)(C)3 omega^(2)(D)3 omega(1-omega)

If omega is the complex cube root of unity,then prove that det[[1,1,11,-1-omega^(2),omega^(2)1,omega^(2),omega^(4)]]=+-3sqrt(3)i