Home
Class 12
MATHS
If f(x)= (x-1)/(2x^2-7x+5) for x!=1 and ...

If `f(x)= (x-1)/(2x^2-7x+5)` for `x!=1` and `f(x)=-1/3` for `x=1` then `f'(1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f (x) = (x -1)/( 2x ^(2) - 7x + 5) for x ne 1, f (1) = (-1)/(3), find f '(1).

If f(x)={{:((x-1)/(2x^(2)-7x+5)",","for"xne1),(-(1)/(3)",","for"x=1):} then f'(1) is equal to

If f(x) = {:{((x -1)/(2x^(2) - 7 x +5) , " for " x ne 1) , (-1/3 , " for " x = 1):} then f' (1) is equal to

If f(x) = {:{((x -1)/(2x^(2) - 7 x +5) , " for " x ne 1) , (-1/3 , " for " x = 1):} then f (1) is equal to

If f(x)={(x-1)/(2x^(2)-7x+5), when x!=1-(1)/(3), when x=1, prove that f'(1)=-(2)/(9)

Function f(x) is defined as f(x)={(x-1)/(2x^(2)-7x+5),x!=1 and -(1)/(3),x=1 .Is f(x) differentiable at x=1 if yes find f'(1)?

If f(x) ={{:((x-1)/(2x ^(2) -7x +5),"when"x ne1),(-1/3, "when" x=1):} then the value of f '(1) is-

If f(x-1) = 7x - 5 find f(x) and f(x+2).