Home
Class 12
MATHS
Let Cn=int(1/n+1)^(1/n) tan^(-1)(nx)/sin...

Let `C_n=int_(1/n+1)^(1/n) tan^(-1)(nx)/sin^(-1)(nx) dx` then `lim_(n->oo) n^2C_n=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let C_(n)= int_(1//n+1)^(1//n)(tan^(-1)(nx))/(sin^(-1) (nx)) dx , "then " lim_(n rarr infty) n^(n). C_(n) is equal to

Let C_(n)= int_(1//n+1)^(1//n)(tan^(-1)(nx))/(sin^(-1) (nx)) dx , "then " lim_(n rarr infty) n^(n). C_(n) is equal to

Let I_(n) = int_(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx , n in N then

lim_(n to oo)(int_(1//(n+1))^(1//n)tan^(-1)(nx)dt)/(int_(1//(n+1))^(1//n)sin^(-1)(nx)dx) is equal to

Let a_(n)=int_(0)^(pi//2)(1-sint )^(n) sin 2t, then lim_(n to oo)sum_(n=1)^(n)(a_(n))/(n) is equal to

Let a_(n)=int_(0)^(pi//2)(1-sint )^(n) sin 2t, then lim_(n to oo)sum_(n=1)^(n)(a_(n))/(n) is equal to

If (n^(n))/(n!)=(nx)/((n-1)!), x =

Let f(x)=lim_(n rarr oo)(cos x)/((1+tan^(-1)x)^(n)), then int_(0)^(oo)f(x)dx=