Home
Class 12
MATHS
[sqrt(pi)(d)/(dx)(tan^(-1)x)^(2)=k tan^(...

[sqrt(pi)(d)/(dx)(tan^(-1)x)^(2)=k tan^(-1)x*(1)/(1+x^(2))quad " ₹?,"quad grad(x)k-theta}],[" (4) "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If (d)/(dx)(tan^(-1)x)^(2)=k tan^(-1)x*(1)/(1+x^(2)) , then the value of k is -

(d)/(dx)(tan^(-1)((x)/(sqrt(a^(2)-x^(2))))

(d)/(dx)[tan{tan^(-1)((x)/(a))-tan^(-1)((x-a)/(x+a))}]=

d/(dx) [tan^(-1)(sqrt(x))] =

d/(dx) [tan^(-1)(sqrt(x))] =

(d)/(dx)[tan^(-1)sqrt(1+x^(2))-cot^(-1)(-sqrt(1+x^(2)))]=

(d)/(dx)[tan^(-1)((1)/(2x)-(x)/(2))]=

(d)/(dx)tan^(-1)((x)/(1-sqrt(1+x^(2))))]=

(d)/(dx)[tan^-1((sqrt(1+x^(2))-1)/(x))]=